Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 4;41(4):2300-2311.
doi: 10.1021/acs.langmuir.4c03842. Epub 2025 Jan 16.

Quick Freezing-Induced Au Nanoparticle Aggregates (QFIAAs) for Near-IR (NIR) Surface-Enhanced Raman Scattering (SERS) Substrates

Affiliations

Quick Freezing-Induced Au Nanoparticle Aggregates (QFIAAs) for Near-IR (NIR) Surface-Enhanced Raman Scattering (SERS) Substrates

Kristopher W Hoyt et al. Langmuir. .

Abstract

Here, we report a simple method to prepare near-IR (NIR) surface-enhanced Raman scattering (SERS) substrates by quickly freezing a citrate-capped Au nanoparticle (AuNP) solution in liquid nitrogen, followed by thawing it at room temperature. This process aggregates AuNPs in a controlled manner by forming ice crystals with smaller grain sizes when compared to a slow freezing process. The resulting smaller AuNP aggregates remain suspended in solution long enough to conduct high-throughput chemical analysis in a microwell plate using the NIR SERS spectroscopy. We named these aggregates quick freezing-induced AuNP aggregates (QFIAAs). The aggregation state of QFIAAs in solution is stable for at least three months when stored at 4 °C. Several QFIAAs were prepared using monodisperse citrate-capped AuNPs of various sizes. QFIAAs prepared from AuNPs with an average diameter of 70 nm (70 nm QFIAAs) showed the best performance, considering both NIR SERS activity and the repeatability of the results. The NIR SERS enhancement factor of the 70 nm QFIAAs measured using 57 nM Rhodamine 6G (R6G) was 5 × 104. The R6G molecules could not displace the citrates present in the hotspots of QFIAAs, indicating that the long-term stability of QFIAAs originates from the tight interparticle binding through the citrates. The limit of detection (LOD) of R6G was 2 × 101 nM using the 70 nm QFIAAs. We anticipate that the QFIAA system can be used not only to screen reporter molecules for the NIR SERS bioimaging but also to detect analytes with background fluorescence that can be suppressed with NIR excitation wavelengths.

PubMed Disclaimer

LinkOut - more resources