Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2025 Jan 17;1(1):CD014845.
doi: 10.1002/14651858.CD014845.pub2.

Calorie (energy) labelling for changing selection and consumption of food or alcohol

Affiliations
Meta-Analysis

Calorie (energy) labelling for changing selection and consumption of food or alcohol

Natasha Clarke et al. Cochrane Database Syst Rev. .

Abstract

Background: Overconsumption of food and consumption of any amount of alcohol increases the risk of non-communicable diseases. Calorie (energy) labelling is advocated as a means to reduce energy intake from food and alcoholic drinks. However, there is continued uncertainty about these potential impacts, with a 2018 Cochrane review identifying only a small body of low-certainty evidence. This review updates and extends the 2018 Cochrane review to provide a timely reassessment of evidence for the effects of calorie labelling on people's selection and consumption of food or alcoholic drinks.

Objectives: - To estimate the effect of calorie labelling for food (including non-alcoholic drinks) and alcoholic drinks on selection (with or without purchasing) and consumption. - To assess possible modifiers - label type, setting, and socioeconomic status - of the effect of calorie labelling on selection (with or without purchasing) and consumption of food and alcohol.

Search methods: We searched CENTRAL, MEDLINE, Embase, PsycINFO, five other published or grey literature databases, trial registries, and key websites, followed by backwards and forwards citation searches. Using a semi-automated workflow, we searched for and selected records and corresponding reports of eligible studies, with these searches current to 2 August 2021. Updated searches were conducted in September 2023 but their results are not fully integrated into this version of the review.

Selection criteria: Eligible studies were randomised controlled trials (RCTs) or quasi-RCTs with between-subjects (parallel group) or within-subjects (cross-over) designs, interrupted time series studies, or controlled before-after studies comparing calorie labelling with no calorie labelling, applied to food (including non-alcoholic drinks) or alcoholic drinks. Eligible studies also needed to objectively measure participants' selection (with or without purchasing) or consumption, in real-world, naturalistic laboratory, or laboratory settings.

Data collection and analysis: Two review authors independently selected studies for inclusion and extracted study data. We applied the Cochrane RoB 2 tool and ROBINS-I to assess risk of bias in included studies. Where possible, we used (random-effects) meta-analyses to estimate summary effect sizes as standardised mean differences (SMDs) with 95% confidence intervals (CIs), and subgroup analyses to investigate potential effect modifiers, including study, intervention, and participant characteristics. We synthesised data from other studies in a narrative summary. We rated the certainty of evidence using GRADE.

Main results: We included 25 studies (23 food, 2 alcohol and food), comprising 18 RCTs, one quasi-RCT, two interrupted time series studies, and four controlled before-after studies. Most studies were conducted in real-world field settings (16/25, with 13 of these in restaurants or cafeterias and three in supermarkets); six studies were conducted in naturalistic laboratories that attempted to mimic a real-world setting; and three studies were conducted in laboratory settings. Most studies assessed the impact of calorie labelling on menus or menu boards (18/25); six studies assessed the impact of calorie labelling directly on, or placed adjacent to, products or their packaging; and one study assessed labels on both menus and on product packaging. The most frequently assessed labelling type was simple calorie labelling (20/25), with other studies assessing calorie labelling with information about at least one other nutrient, or calories with physical activity calorie equivalent (PACE) labelling (or both). Twenty-four studies were conducted in high-income countries, with 15 in the USA, six in the UK, one in Ireland, one in France, and one in Canada. Most studies (18/25) were conducted in high socioeconomic status populations, while six studies included both low and high socioeconomic groups, and one study included only participants from low socioeconomic groups. Twenty-four studies included a measure of selection of food (with or without purchasing), most of which measured selection with purchasing (17/24), and eight studies included a measure of consumption of food. Calorie labelling of food led to a small reduction in energy selected (SMD -0.06, 95% CI -0.08 to -0.03; 16 randomised studies, 19 comparisons, 9850 participants; high-certainty evidence), with near-identical effects when including only studies at low risk of bias, and when including only studies of selection with purchasing. There may be a larger reduction in consumption (SMD -0.19, 95% CI -0.33 to -0.05; 8 randomised studies, 10 comparisons, 2134 participants; low-certainty evidence). These effect sizes suggest that, for an average meal of 600 kcal, adults exposed to calorie labelling would select 11 kcal less (equivalent to a 1.8% reduction), and consume 35 kcal less (equivalent to a 5.9% reduction). The direction of effect observed in the six non-randomised studies was broadly consistent with that observed in the 16 randomised studies. Only two studies focused on alcoholic drinks, and these studies also included a measure of selection of food (including non-alcoholic drinks). Their results were inconclusive, with inconsistent effects and wide 95% CIs encompassing both harm and benefit, and the evidence was of very low certainty.

Authors' conclusions: Current evidence suggests that calorie labelling of food (including non-alcoholic drinks) on menus, products, and packaging leads to small reductions in energy selected and purchased, with potentially meaningful impacts on population health when applied at scale. The evidence assessing the impact of calorie labelling of food on consumption suggests a similar effect to that observed for selection and purchasing, although there is less evidence and it is of lower certainty. There is insufficient evidence to estimate the effect of calorie labelling of alcoholic drinks, and more high-quality studies are needed. Further research is needed to assess potential moderators of the intervention effect observed for food, particularly socioeconomic status. Wider potential effects of implementation that are not assessed by this review also merit further examination, including systemic impacts of calorie labelling on industry actions, and potential individual harms and benefits.

Antecedentes: El consumo excesivo de alimentos, y el consumo de cualquier cantidad de alcohol aumenta el riesgo de enfermedades no transmisibles. El etiquetado calórico (energético) está recomendado como un medio para reducir la ingesta energética de alimentos y bebidas alcohólicas. Sin embargo, sigue habiendo dudas acerca de estos posibles efectos, y una revisión Cochrane de 2018 identificó solo un pequeño conjunto de evidencia de certeza baja. Esta revisión actualiza y amplía la revisión Cochrane de 2018 para proporcionar una reevaluación oportuna de la evidencia de los efectos del etiquetado calórico sobre la selección y el consumo de alimentos o bebidas alcohólicas por parte de las personas.

Objetivos: – Estimar el efecto del etiquetado calórico de los alimentos (incluidas las bebidas no alcohólicas) y las bebidas alcohólicas sobre la selección (con o sin compra) y el consumo. – Evaluar los posibles modificadores (tipo de etiqueta, contexto y nivel socioeconómico) del efecto del etiquetado calórico sobre la selección (con o sin compra) y el consumo de alimentos y alcohol. MÉTODOS DE BÚSQUEDA: Se realizaron búsquedas en CENTRAL, MEDLINE, Embase, PsycINFO, otras cinco bases de datos de literatura publicada o gris, registros de ensayos y sitios web clave, seguidas de búsquedas de referencias citadas en los artículos y búsquedas prospectivas de referencias de los artículos identificados. Mediante un flujo de trabajo semiautomático, se buscaron y seleccionaron las entradas y los informes correspondientes de los estudios elegibles, y las búsquedas están actualizadas hasta el 2 de agosto de 2021. Las búsquedas actualizadas se realizaron en septiembre de 2023, pero sus resultados no están completamente integrados en esta versión de la revisión. CRITERIOS DE SELECCIÓN: Los estudios elegibles fueron ensayos controlados aleatorizados (ECA) o cuasialeatorizados con diseños intersujeto (grupos paralelos) o intrasujeto (crossover), estudios de series de tiempo interrumpido o estudios controlados tipo antes y después que compararan el etiquetado calórico con ningún etiquetado calórico, aplicados a alimentos (incluidas las bebidas no alcohólicas) o bebidas alcohólicas. Los estudios elegibles también debían medir objetivamente la selección (con o sin compras) o el consumo de los participantes, en los contextos de vida real, laboratorio o laboratorio naturalista. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Dos autores de la revisión, de forma independiente, seleccionaron los estudios para la inclusión y extrajeron los datos de los estudios. Se aplicó la herramienta de Cochrane RoB 2 y ROBINS‐I para evaluar el riesgo de sesgo de los estudios incluidos. Cuando fue posible, se utilizaron metanálisis (de efectos aleatorios) para calcular las magnitudes globales del efecto como diferencias de medias estandarizadas (DME) con intervalos de confianza (IC) del 95%, y análisis de subgrupos para investigar los posibles modificadores del efecto, incluidos el estudio, la intervención y las características de los participantes. Se resumieron los datos de otros estudios en un resumen narrativo. La certeza de la evidencia se calificó mediante el método GRADE.

Resultados principales: Se incluyeron 25 estudios (23 de alimentos, 2 de alcohol y alimentos), que incluyeron 18 ECA, 1 ensayo controlado cuasialeatorizados, 2 series temporales interrumpidas y 4 estudios controlados de tipo antes y después. La mayoría de los estudios se realizaron en contextos de condiciones real (16/25; 13 de ellos en restaurantes o cafeterías y tres en supermercados); seis estudios se realizaron en laboratorios naturalistas que trataron de imitar condiciones de la vida real; y tres estudios se realizaron en contextos de laboratorio. La mayoría de los estudios evaluaron la repercusión del etiquetado calórico en cartas o pizarras de menús (18/25); seis estudios evaluaron la repercusión del etiquetado calórico directamente en los productos o sus envases, o colocados junto a ellos; y un estudio evaluó las etiquetas tanto en menús como en los envases de los productos. El tipo de etiquetado evaluado con mayor frecuencia fue el etiquetado calórico simple (20/25), y otros estudios evaluaron el etiquetado calórico con información sobre al menos otro nutriente, o el etiquetado calórico con equivalente calórico de actividad física (ECAF) (o ambos). Veinticuatro estudios se realizaron en países de ingresos altos, 15 en Estados Unidos, seis en el Reino Unido, uno en Irlanda, uno en Francia y uno en Canadá. La mayoría de los estudios (18/25) se llevaron a cabo en poblaciones de nivel socioeconómico alto, seis estudios incluyeron grupos socioeconómicos bajos y altos, y un estudio incluyó solo participantes de grupos socioeconómicos bajos. Veinticuatro estudios incluyeron una medida de selección de alimentos (con o sin compra), la mayoría de los cuales midió la selección con compra (17/24), y ocho estudios incluyeron una medida del consumo de alimentos. El etiquetado calórico de los alimentos dio lugar a una pequeña reducción de la energía seleccionada (DME −0,06; IC del 95%: −0,08 a −0,03; 16 estudios aleatorizados, 19 comparaciones, 9850 participantes; evidencia de certeza alta), con efectos casi idénticos cuando se incluyeron solo estudios con bajo riesgo de sesgo y cuando se incluyeron solo estudios de selección con compra. Podría haber una mayor reducción del consumo (DME −0,19; IC del 95%: −0,33 a −0,05; ocho estudios aleatorizados, 10 comparaciones, 2134 participantes; evidencia de certeza baja). Estas magnitudes del efecto indican que, para una comida media de 600 kcal, los adultos expuestos al etiquetado calórico seleccionarían 11 kcal menos (equivalente a una reducción del 1,8%) y consumirían 35 kcal menos (equivalente a una reducción del 5,9%). La dirección del efecto observada en los seis estudios no aleatorizados fue ampliamente consistente con la observada en los 16 estudios aleatorizados. Solo dos estudios se centraron en las bebidas alcohólicas, y estos también incluyeron una medida de selección de alimentos (incluidas las bebidas no alcohólicas). Sus resultados no fueron concluyentes, con efectos inconsistentes e IC del 95% amplios que abarcaron tanto efectos perjudiciales como beneficiosos, y la evidencia fue de certeza muy baja.

Conclusiones de los autores: La evidencia actual apunta que el etiquetado calórico de los alimentos (incluidas las bebidas no alcohólicas) en los menús, los productos y los envases da lugar a pequeñas reducciones de la energía seleccionada y adquirida, con efectos potencialmente significativos sobre la salud de la población cuando se aplica a escala. La evidencia que evalúa la repercusión del etiquetado calórico de los alimentos sobre el consumo indica un efecto similar al observado para la selección y la compra, aunque hay menos evidencia y es de menor certeza. No hay evidencia suficiente para calcular el efecto del etiquetado calórico de las bebidas alcohólicas, y se necesitan más estudios de alta calidad. Se necesitan más estudios de investigación para evaluar los posibles moderadores del efecto observado de la intervención en los alimentos, en particular el nivel socioeconómico. Los posibles efectos más amplios de la implementación que no se evalúan en esta revisión también merecen ser más estudiados, incluidos la repercusión sistémica del etiquetado calórico sobre las acciones de la industria y los posibles efectos perjudiciales y beneficiosos individuales.

PubMed Disclaimer

Conflict of interest statement

NC: no relevant interests; involved in Clarke 2023a (funding source: Wellcome Trust) – lead author, involved in design, data collection, and write‐up of the study, University of Cambridge.

EP: no relevant interests; involved in Clarke 2023a; Reynolds 2022 – studies undertaken as part of a programme of work as a research assistant at the University of Cambridge (one study looked at the impact of graphic health warning labels and the other on PACE labels).

IS: none.

MP: no relevant interests; involved in Clarke 2023a; Reynolds 2022; Vasiljevic 2018; Vasiljevic 2019.

NWR: none.

TMM: no relevant interests; involved in Clarke 2023a (funder: Wellcome Trust, Cancer Research UK); Reynolds 2022 (funder: Department of Health Policy Research Programme and the Institute of Grocery Distribution); Vasiljevic 2018 (funder: National Institute for Health Research Policy Research Programme and the Institute of Grocery Distribution); Vasiljevic 2019.

SAJ: Food Standards Agency (employment); published general expression of views about complex evidence base relating to labelling – no fixed position; involved in Reynolds 2022; Vasiljevic 2018; Vasiljevic 2019 – primary research studies on effectiveness of labelling to change food purchasing behaviour.

GJH: no relevant interests; involved in Clarke 2023a (funded in whole or in part by the Wellcome Trust (ref: 206853/Z/17/Z)); Reynolds 2022 (funded by a collaborative Award in Science from Wellcome Trust (Behaviour Change by Design: 206853/Z/17/Z) awarded to Theresa Marteau, Paul Fletcher, Gareth Hollands, and Marcus Munafò); Vasiljevic 2018 (funded by the Department of Health Policy Research Programme – Policy Research Unit in Behaviour and Health [PR‐UN‐0409‐10109] and the Institute of Grocery Distribution [RG83425]); Vasiljevic 2019 (funded by the National Institute for Health Research Policy Research Programme (Policy Research Unit in Behaviour and Health [PR‐UN‐0409‐10109]) and the Institute of Grocery Distribution [RG83425]) – part of the research team, based at the University of Cambridge for each of these four studies.

Review authors who were involved in the conduct of a study that was eligible for inclusion in this review (NC, EP, MP, TM, SJ, GH) did not make any study eligibility decisions about, extract data from, carry out the risk of bias assessment for, or perform GRADE assessments for the studies they were involved in.

Update of

Similar articles

Cited by

References

References to studies included in this review

Berry 2019 {published data only}
    1. Berry C, Burton S, Howlett E, Newman CL. Understanding the calorie labeling paradox in chain restaurants: why menu calorie labeling alone may not affect average calories ordered. Journal of Public Policy & Marketing 2019;38:192-213.
    1. Berry C. The Effects of Calorie Information Disclosures on Food Choice and Retailer-related Outcomes [Dissertation]. Fayetteville (AR): University of Arkansas, 2017.
Bollinger 2011 {published data only}
    1. Bollinger B, Leslie P, Sorensen A. Calorie posting in chain restaurants. American Economic Journal-Economic Policy 2011;3(1):91-128.
Cawley 2020 {published data only}
    1. AEARCTR-0000940. The impact of restaurant menu calorie labeling on food choice. www.socialscienceregistry.org/trials/940 (first received 2 August 2018). [REGISTRATION: https://www.socialscienceregistry.org/trials/940]
    1. Cawley J, Susskind A, Willage B. The impact of information disclosure on consumer behavior: evidence from a randomized field experiment of calorie labels on restaurant menus. Journal of Policy Analysis and Management 2020;39:1020-42.
    1. Cawley J, Susskind A, Willage B. The impact of information disclosure on consumer behavior: evidence from a randomized field experiment of calorie labels on restaurant menus. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=3226841 (accessed prior to 5 December 2024).
    1. Cawley J, Susskind AM, Barton W. Does information disclosure improve consumer knowledge? American Journal of Health Economics 2021;7(4):427-56. [DOI: 10.1086/714987] - DOI
    1. Cawley J, Susskind AM, Willage B. Does information disclosure improve consumer knowledge? Evidence from a randomized experiment of restaurant menu calorie labels. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=3597858 (accessed prior to 5 December 2024).
Clarke 2023a {published data only}
    1. Clarke N, Ferrar J, Pechey E, Ventsel M, Pilling MA, Munafo MR, et al. Impact of health warnings and calorie labels on selection and purchasing of alcoholic and non-alcoholic drinks: a randomised controlled trial. Addiction (Abingdon, England) 2023;118(12):2327-41. - PMC - PubMed
    1. ISRCTN10313219. Impact of health warning labels and calorie information on the selection and purchasing of alcohol. www.isrctn.com/ISRCTN10313219 (first received 17 August 2021). [DOI: 10.1186/ISRCTN10313219] - DOI
Dubois 2021 {published data only}
    1. Dubois P, Albuquerque P, Allais O, Bonnet C, Bertail P, Combris P, et al. Effects of front-of-pack labels on the nutritional quality of supermarket food purchases: evidence from a large-scale randomized controlled trial. Journal of the Academy of Marketing Science 2021;49:119-38.
    1. Dubois P, Allais O, Albuquerque P, Bertail P, Bonnet C, Chandon P, et al. Impact of analytic and synthetic front-of-pack graphical nutrition labels on the nutritional quality of supermarket food purchases: evidence from a French randomized control experiment. Research Papers In Economics 2018.
    1. Effects of front-of-pack nutrition labels on food purchases: a randomised controlled trial. www.isrctn.com/ISRCTN58212763 (first received 7 November 2017). [DOI: 10.1186/isrctn58212763] - DOI
Elbel 2009 {published data only}
    1. Elbel B, Kersh R, Brescoll VL, Dixon LB. Calorie labeling and food choices: a first look at the effects on low-income people in New York City. Health Affairs 2009;28:w1110-w1121. - PubMed
Ellison 2013 {published data only}
    1. Ellison B, Lusk J, Davis D. Looking at the label and beyond: the effects of calorie label, health consciousness and demographics on calorie intake in restaurants. International Journal of Behavioural Nutrition and Physical Activity 2013;10(21):1-9. - PMC - PubMed
Ellison 2014 {published data only}
    1. Ellison B, Lusk J, Davis D. The impact of restaurant calorie labels on food choice: results from a field experiment. Economic Inquiry 2014;52(2):666-81.
Elshiewy 2018 {published data only}
    1. Elshiewy O, Boztug Y. When back of pack meets front of pack: how salient and simplified nutrition labels affect food sales in supermarkets. Journal of Public Policy & Marketing 2018;37:55-67.
Fichera 2020 {published data only}
    1. Fichera E, Hinke S. The response to nutritional labels: evidence from a quasi-experiment. Journal of Health Economics 2020;72:1-17. - PubMed
Hammond 2013 {published data only}
    1. Hammond D, Goodman S, Hanning R, Danel S. A randomised trial of calorie labeling on menus. Preventive Medicine 2013;57(6):860-6. - PubMed
    1. NCT01948752. Clinical trial of menu labeling. clinicaltrials.gov/ct2/show/NCT01948752 (first received 24 September 2013).
Harnack 2008 {published data only}
    1. Harnack LJ, French SA, Oakes JM, Story MT, Jeffery RW, Rydell SA. Effects of calorie labeling and value size pricing on fast food meal choices: results from an experimental trial. International Journal of Behavioral Nutrition and Physical Activity 2008;5(63):13. - PMC - PubMed
    1. NCT00127660. Effect of nutrition labeling on fast food choices. clinicaltrials.gov/ct2/show/NCT00127660 (first received 8 August 2005).
James 2015 {published data only}
    1. James A, Adams-Huet B, Crisp K, Mitchell J, Dart L, Turner M, et al. The effect of menu labels, displaying minutes of brisk walking needed to burn food calories, on calories ordered and consumed in young adults. FASEB Journal 2013. [DOI: 10.1096/fasebj.27.1_supplement.367.2] - DOI
    1. James A, Adams-Huet B, Shah M. Menu labels displaying the kilocaloric content or the exercise equivalent: effects on energy ordered and consumed in young adults. American Journal of Health Promotion 2015;29(5):294-302. - PubMed
Oliveira 2018 {published data only}
    1. Oliveira RC, Fernandes AC, Proenca RP, Hartwell H, Rodrigues VM, Colussi CF, et al. Menu labelling and healthy food choices: a randomised controlled trial. British Food Journal 2018;120:788-803.
Petimar 2019 {published data only}
    1. Petimar J, Zhang F, Cleveland LP, Simon D, Gortmaker SL, Polacsek M, et al. Estimating the effect of calorie menu labeling on calories purchased in a large restaurant franchise in the southern United States: quasi-experimental study. BMJ (Clinical Research Ed.) 2019;367:l5837. - PMC - PubMed
Petimar 2021 {published data only}
    1. Petimar J, Moran AJ, Ramirez M, Block JP. A natural experiment to evaluate the nutritional content of restaurant meal purchases after calorie labeling. Journal of the Academy of Nutrition and Dietetics 2020;120(12):2039-46. - PMC - PubMed
    1. Petimar J, Ramirez M, Rifas-Shiman SL, Linakis S, Mullen J, Roberto CA, et al. Evaluation of the impact of calorie labeling on McDonald's restaurant menus: a natural experiment. International Journal of Behavioral Nutrition and Physical Activity 2019;16:99. - PMC - PubMed
    1. Petimar J, Zhang F, Rimm EB, Simon D, Cleveland LP, Gortmaker SL, et al. Changes in the calorie and nutrient content of purchased fast food meals after calorie menu labeling: a natural experiment. PLOS Medicine 2021;18:e1003714. - PMC - PubMed
    1. Petimar J, Zhang F, Simon D, Cleveland L, Gortmaker S, Bleich S, et al. Changes in nutrient content of meal purchases after calorie menu labeling. Obesity (Silver Spring, Md.) 2020;28:Poster 083.
Platkin 2014 {published data only}
    1. Platkin C, Yeh M-C, Hirsch K, Weiss Wiewel E, Lin C-Y, Tung H-J, et al. The effect of menu labeling with calories and exercise equivalents on food selection and consumption. BMC Obesity 2014;1:21. - PMC - PubMed
    1. Platkin C. Think before you eat: calories and exercise equivalents presented on menus at point-of-choice. Dissertation 2017.
Reynolds 2022 {published data only}
    1. ISRCTN31315776. Effect of physical activity calorie equivalent (PACE) labels on food purchased in worksite cafeterias. www.isrctn.com/ISRCTN31315776 (first received 22 March 2021). [REGISTRATION: https://www.isrctn.com/ISRCTN31315776]
    1. Reynolds JP, Ventsel M, Hobson A, Pilling M, Pechey R, Jebb SA, et al. Evaluation of physical activity calorie equivalent (PACE) labels' impact on energy purchased in cafeterias: a stepped-wedge randomised controlled trial. PLOS Medicine 2022;19(11):e1004116. - PMC - PubMed
Roberto 2010 {published data only}
    1. NCT01626729. Facts-up-front versus traffic-light food labels. clinicaltrials.gov/ct2/show/NCT01626729 (first received 25 June 2012).
    1. Roberto CA, Larsen PD, Agnew H, Baik J, Brownell KD. Evaluating the impact of menu labeling on food choices and intake. American Journal of Public Health 2010;100(2):312-8. - PMC - PubMed
Roberto 2012 {published data only}
    1. Roberto CA, Shivaram M, Martinez O, Boles C, Harris JL, Brownell KD. The Smart Choices front-of-package nutrition label. Influence on perceptions and intake of cereal. Appetite 2012;58:651-7. - PubMed
Robertson 2020 {published data only}
    1. Lunn P, Robertson D. The position of calories on menus influences how much people eat. Research Papers In Economics 2019.
    1. Robertson DA, Lunn P. The effect of spatial position of calorie information on choice, consumption and attention. Economic and Social Research Institute (ESRI).
    1. Robertson DA, Lunn PD. The effect of spatial location of calorie information on choice, consumption and eye movements. Appetite 2020;144:104446. - PubMed
Temple 2010 {published data only}
    1. Temple JL, Johnson K, Recupero K, Suders H. Nutrition labels decrease energy intake in adults consuming lunch in the laboratory. Journal of the American Dietetic Association 2010;110:1094-7. - PubMed
VanEpps 2016 {published data only}
    1. NCT01473225. Can calorie labels increase caloric intake? clinicaltrials.gov/ct2/show/NCT01473225 (first received 17 November 2011).
    1. VanEpps EM, Downs JS, Loewenstein G. Calorie label formats: using numeric and traffic light calorie labels to reduce lunch calories. Journal of Public Policy & Marketing 2016;35(1):26-36.
Vasiljevic 2018 {published data only}
    1. Vasiljevic M, Cartwright E, Pechey R, Hollands GJ, Couturier DL, Jebb SA, et al. Physical micro-environment interventions for healthier eating in the workplace: protocol for a stepped wedge randomised controlled pilot trial. Pilot and Feasibility Studies 2017;3:27. - PMC - PubMed
    1. Vasiljevic M, Cartwright E, Pilling M, Lee MM, Bignardi G, Pechey R, et al. Impact of calorie labelling in worksite cafeterias: a stepped wedge randomised controlled pilot trial. International Journal of Behavioral Medicine 2018;15(1):41. - PMC - PubMed
    1. Vasiljevic M, Cartwright E, Pilling M, Lee MM, Bignardi G, Pechey R, et al. Impact of calorie labelling in worksite cafeterias: a stepped wedge randomised controlled pilot trial. International Journal of Behavioral Nutrition and Physical Activity 2018;15:41. - PMC - PubMed
Vasiljevic 2019 {published data only}
    1. ISRCTN20474205. Enhanced calorie labelling to improve employees' diets in workplace cafeterias. www.isrctn.com/ISRCTN20474205 (first received 21 February 2018).
    1. Vasiljevic M, Fuller G, Pilling M, Hollands GJ, Pechey R, Jebb SA, et al. What is the impact of increasing the prominence of calorie labelling? A stepped wedge randomised controlled pilot trial in worksite cafeterias. Appetite 2019;141:104304. - PMC - PubMed

References to studies excluded from this review

Acton 2019 {published data only}
    1. Acton RB, Jones AC, Kirkpatrick SI, Roberto CA, Hammond D. Taxes and front-of-package labels improve the healthiness of beverage and snack purchases: a randomized experimental marketplace. International Journal of Behavioral Nutrition and Physical Activity 2019;16(1):46. - PMC - PubMed
Acton 2020a {published data only}
    1. Acton RB, Hammond D. Impact of sugar taxes and front-of-package nutrition labels on purchases of protein, calcium and fibre. Preventive Medicine 2020;136:106091. - PubMed
Acton 2020b {published data only}
    1. Acton R. The Influence of Sugar Taxes and Front-of-Package Nutrition Labels on Consumer Purchasing Behaviours: a Randomized Experimental Marketplace [thesis]. Ontario (Canada): University of Waterloo, 2020.
Acton 2021 {published data only}
    1. Acton RB, Kirkpatrick SI, Hammond D. Exploring the main and moderating effects of individual-level characteristics on consumer responses to sugar taxes and front-of-pack nutrition labels in an experimental marketplace. Canadian Journal of Public Health. Revue Canadienne de Sante Publique 2021;112(4):647-62. - PMC - PubMed
Allan 2015 {published data only}
    1. Allan JL, Johnston M, Campbell N. Snack purchasing is healthier when the cognitive demands of choice are reduced: a randomized controlled trial. Health Psychology 2015;34(7):750-5. - PubMed
Allan 2020 {published data only}
    1. Allan JL, Powell DJ. Prompting consumers to make healthier food choices in hospitals: a cluster randomised controlled trial. International Journal of Behavioral Nutrition and Physical Activity 2020;17(1):86. - PMC - PubMed
Al‐Otaibi 2021 {published data only}
    1. Al-Otaibi H, Al-Sandal T, Elkatr HO. Is calorie labeling on menus related to weight disturbances among females in Saudi Arabia? Journal of Nutrition and Metabolism 2021;2021:4041451. [DOI: 10.1155/2021/4041451] - DOI - PMC - PubMed
Bailey 2022 {published data only}
    1. Bailey RL, Kwon K, Garcia CJ, Wang P. Fast food menu calorie labeling contexts as complex contributing factors to overeating. Appetite 2022;173:105992-2. [DOI: 10.1016/j.appet.2022.105992] - DOI - PubMed
Balasubramanian 2002 {published data only}
    1. Balasubramanian SK, Cole C. Consumers' search and use of nutrition information: the challenge and promise of the Nutrition Labeling and Education Act. Journal of Marketing 2002;66(3):112-27. [Study 3 in published paper]
Baum 2017 {published data only}
    1. Baum JI, Gaines BL, Kubas GC, Mitchell CF, Russell SL. Educational nutrition messaging at breakfast reduces snack intake and influences snack preferences in adult men and women. Appetite 2017;117:67-73. - PubMed
Bergen 2006 {published data only}
    1. Bergen D, Yeh M-C. Effects of energy-content labels and motivational posters on sales of sugar-sweetened beverages: stimulating sales of diet drinks among adults study. Journal of the American Dietetic Association 2006;106(11):1866-9. - PubMed
Bergman 2021 {published data only}
    1. Bergman C, Tian Y, Moreo A, Raab C. Menu engineering and dietary behavior impact on young adults' kilocalorie choice. Nutrients 2021;13(7):2329. - PMC - PubMed
Byrd 2017 {published data only}
    1. Byrd K. Sodium and the restaurant consumer: associations with dining out frequency and menu nutrition information. Dissertation Abstracts International: Section B: the Sciences and Engineering. https://docs.lib.purdue.edu/dissertations/AAI10270891/ (accessed 6 January 2025).
Byrd 2021 {published data only}
    1. Byrd K, Almanza B. Restaurant menu labeling for calories and sodium: effect of consumer mindset of immediate versus future consequences. Journal of Food Service Business Research 2021;24(3):310-47.
Carter 2018 {published data only}
    1. Carter KA, González-Vallejo C. Nutrient-specific system versus full fact panel: testing the benefits of nutrient-specific front-of-package labels in a student sample. Appetite 2018;125:512-26. - PubMed
Cavanagh 2014 {published data only}
    1. Cavanagh KV, Kruja B, Forestall CA. The effect of brand and caloric information on flavor perception and food consumption in restrained and unrestrained eaters. Appetite 2014;82:1-7. - PubMed
Chu 2009a {published data only}
    1. Chu YH, Frongillo EA, Jones SJ, Kaye GL. Improving patrons' meal selections through the use of point-of-selection nutrition labels. American Journal of Public Health 2009;99(11):2001-5. - PMC - PubMed
Chu 2009b {published data only}
    1. Chu YH, Frongillo EA, Jones SJ, Kaye GL. Nutrition labels at point-of-selection in a food-service operation improves patrons' meal selection. FASEB Journal 2009;23(1):336.5. - PMC - PubMed
Cioffi 2015 {published and unpublished data}
    1. Cioffi CE, Levitsky D, Pacanowski CR, Bertz F. A nudge in a healthy direction. The effect of nutrition labels on food purchasing behaviors in university dining facilities. Appetite 2015;92:7-14. - PubMed
    1. Cioffi CE, Levitsky D. An Examination of the Effect of Nutrition Labels on Food Purchasing Behavior in Cornell Dining Units [Honors Degree Research Paper]. Cornell (USA): University of Cornell, 2012.
Cornil 2017 {published data only}
    1. Cornil Y, Chandon P. Sensory or nutrition menu labeling? A field experiment in aligning public health and restaurant business goals. Advances in Consumer Research 2017;45:574-5. [http://www.acrwebsite.org/volumes/1024733/volumes/v45/NA-45]
Crockett 2014 {published and unpublished data}
    1. Crockett RA, Jebb SA, Hankins M, Marteau TM. The impact of nutritional labels and socioeconomic status on energy intake: an experimental field study. Appetite 2014;81:12-9. - PubMed
Crosetto 2017 {published data only}
    1. Crosetto P, Lacroix A, Muller L, Ruffieux B. Modifications of food purchases in response to five nutrition simplified labelling. Cahiers de Nutrition et de Dietetique 2017;52(3):129-33.
Crosetto 2018 {published data only}
    1. Crosetto P, Lacroix A, Muller L, Ruffieux B. Nutritional and economic impact of 5 alternative front-of-pack nutritional labels: experimental evidence. Research Papers In Economics.
Crosetto 2020 {published data only}
    1. Crosetto P, Lacroix A, Muller L, Ruffieux B. Nutritional and economic impact of five alternative front-of-pack nutritional labels: experimental evidence. European Review of Agricultural Economics 2020;47(2):785-818.
Dallas 2017 {published data only}
    1. Dallas SK, Liu P, Ubel PA. Don't count calorie labeling out: calorie counts on the left side of menu items lead to lower calorie food choices. Advances in Consumer Research 2017;45:576-7. [https://www.acrwebsite.org/volumes/1023629/volumes/v45/NA-45]
Dallas 2019 {published data only}
    1. Dallas SK, Liu PJ, Ubel PA. Don't count calorie labeling out: calorie counts on the left side of menu items lead to lower calorie food choices. Journal of Consumer Psychology 2019;29(1):60-9.
Defago 2017 {published data only}
    1. Defago D, Geng JF, Molina O, Maria DS. Digestible information: the impact of multiple traffic light nutritional labeling in a developing country. University Library of Munich, Munich (Germany) 2017.
Dubbert 1984 {published data only}
    1. Dubbert PM, Johnson WG, Schlundt DG, Montague NW. The influence of caloric information on cafeteria food choices. Journal of Applied Behavior Analysis 1984;17(1):85-92. - PMC - PubMed
Ebneter 2013 {published data only}
    1. Ebneter D, Latner J, Nigg C. Is less always more? The effects of low fat labeling and caloric information on food intake, calorie estimates, taste preference, and health attributions. Appetite 2013;68:92-7. - PubMed
Egnell 2019 {published data only}
    1. Egnell M, Boutron I, Péneau S, Ducrot P, Touvier M, Galan P, et al. Front-of-pack labeling and the nutritional quality of students' food purchases: a 3-arm randomized controlled trial. American Journal of Public Health 2019;109(8):1122-9. - PMC - PubMed
Erdem 2021 {published data only}
    1. Erdem S. Investigating the effect of restaurant menu labelling on consumer food choices using a field experiment. British Food Journal 2021;124(11):3447-67. [DOI: 10.1108/bfj-04-2021-0432] - DOI
Fang 2019 {published data only}
    1. Fang D, Nayga RM, Snell HA, West GH, Bazzani C. Evaluating USA's new nutrition and supplement facts label: evidence from a non-hypothetical choice experiment. Journal of Consumer Policy 2019;42(4):545-62.
Finkelstein 2019a {published data only}
    1. Finkelstein EA, Ang FJ, Doble B, Wong WH, Dam RM. A randomized controlled trial evaluating the relative effectiveness of the multiple traffic light and Nutri-Score front of package nutrition labels. Nutrients 2019;11(9):2236. - PMC - PubMed
Finkelstein 2019b {published data only}
    1. Finkelstein E, Doble B, Ang FJ, Wong MW, Dam RM. A randomized controlled trial testing the effects of Singapore's front-of-pack healthier choice symbol label with or without a physical activity equivalent label on food purchases and measures of diet quality. Research Square 2019.
Finkelstein 2020 {published data only}
    1. Finkelstein EA, Ang FJ, Doble B. Randomized trial evaluating the effectiveness of within versus across-category front-of-package lower-calorie labelling on food demand. BMC Public Health 2020;20(1):312. - PMC - PubMed
Finkelstein 2021 {published data only}
    1. Finkelstein EA, Doble B, Ang FJ, Wong WH, Dam RM. A randomized controlled trial testing the effects of a positive front-of-pack label with or without a physical activity equivalent label on food purchases. Appetite 2021;158:104997. - PubMed
Girz 2012 {published data only}
    1. Girz L, Polivy J, Herman CP, Lee H. The effects of calorie information on food selection and intake. International Journal of Obesity 2012;36(10):1340-5. - PubMed
Goodman 2018 {published data only}
    1. Goodman S, Vanderlee L, White CM, Hammond D. A quasi-experimental study of a mandatory calorie-labelling policy in restaurants: impact on use of nutrition information among youth and young adults in Canada. Preventive Medicine 2018;116:166-72. - PubMed
Guha 2018 {published data only}
    1. Guha A, Biswas A, Grewal D, Bhowmick S, Nordfalt, J. An empirical analysis of the joint effects of shoppers' goals and attribute display on shoppers' evaluations. Journal of Marketing 2018;82(3):142-56.
Gustafson 2018 {published data only}
    1. Gustafson CR, Zeballos E. The effect of ingredient-specific calorie information on calories ordered. Preventive Medicine Reports 2018;12:186-90. [DOI: 10.1016/j.pmedr.2018.09.013] - DOI - PMC - PubMed
Hartley 2019a {published data only}
    1. Hartley C, Keast RS, Liem DG. The response of more health focused and less health focused people to a physical activity calorie equivalent label on discretionary snack foods. Nutrients 2019;11(3):525. - PMC - PubMed
Hartley 2019b {published data only}
    1. Hartley IE, Keast RS, Liem DG. Physical activity-equivalent label reduces consumption of discretionary snack foods. Public Health Nutrition 2019;21(8):1435-43. - PMC - PubMed
Holmes 2013 {published data only}
    1. Holmes AS, Serrano EL, Machin JE, Duetsch T, Davis GC. Effect of different children's menu labeling designs on family purchases. Appetite 2013;62:198-202. - PubMed
Huseynov 2021 {published data only}
    1. Huseynov S, Palma MA, Ahmad G. Does the magnitude of relative calorie distance affect food consumption. Journal of Economic Behavior & Organization 2021;188:530-51.
IRCT20181002041201N1 {published data only}
    1. IRCT20181002041201N1. The effect of physical activity labeling which indicates the amount of physical activity needed to burn energy of chosen food, and traffic light labeling on food choice. irct.behdasht.gov.ir/trial/34182 (first received 25 October 2018).
ISRCTN90365793 {published data only}
    1. ISRCTN90365793. Prompting healthier snack choices in Scottish hospitals. trialsearch.who.int/Trial2.aspx?TrialID=ISRCTN90365793 (first received 8 October 2019). [REGISTRATION: https://trialsearch.who.int/Trial2.aspx?TrialID=ISRCTN90365793]
Jin 2020 {published data only}
    1. Jin HZ, Li YN, Li DJ, Zheng J. The effects of physical activity calorie equivalent labeling on dieters' food consumption and post-consumption physical activity. Journal of Consumer Affairs 2020;54(2):723-41.
Jue 2012 {published data only}
    1. Jue JJ, Press MJ, McDonald D, Volpp KG, Asch DA, Mitra N, et al. The impact of price discounts and calorie messaging on beverage consumption: a multi-site field study. Preventive Medicine 2012;55(6):629-33. - PubMed
Julia 2021 {published data only}
    1. Julia C, Arnault N, Agaësse C, Fialon M, Deschasaux-Tanguy M, Andreeva VA, et al. Impact of the front-of-pack label Nutri-Score on the nutritional quality of food choices in a quasi-experimental trial in catering. Nutrients 2021;13(12):4530. [DOI: 10.3390/nu13124530] - DOI - PMC - PubMed
Karnik 2018 {published data only}
    1. Karnik H, Peterson CH. Impact of point of sales nutritional labels on food purchase: evidence from the rural Midwest. 2018 Agricultural & Applied Economics Association Annual Meeting; 2018 Aug 5-7; Washington (DC).
Kral 2002 {published data only}
    1. Kral TV, Roe LS, Rolls BJ. Does nutrition information about the energy density of meals affect food intake in normal-weight women? Appetite 2002;39:137-45. - PubMed
Lee 2019 {published data only}
    1. Lee KM, Hammond D, Hobin E, Price M, Olstad DL, Minaker LM, et al. Examining the impact of numeric versus traffic light calorie labelling at the point-of-purchase on young adults' food and beverage purchases. Dietitians of Canada 2019 National Conference; 2019 Jun 5-8; Ottawa (Canada). [URL: https://www.morressier.com/o/event/5cdc2526bf4ffc620542101b/article/5cdc...]
Machin 2018 {published data only}
    1. Machin L, Aschemann-Witzel J, Curutchet MR, Gimenez A, Ares G. Does front-of-pack nutrition information improve consumer ability to make healthful choices? Performance of warnings and the traffic light system in a simulated shopping experiment. Appetite 2018;121:55-62. - PubMed
Machin 2019 {published data only}
    1. Machin L, Curutchet MR, Gimenez A, Aschemann-Witzel J, Ares G. Do nutritional warnings do their work? Results from a choice experiment involving snack products. Food Quality and Preference 2019;77:159-65.
Mantzari 2020 {published data only}
    1. Mantzari E, Pechey R, Codling S, Sexton O, Hollands GJ, Marteau TM. The impact of 'on-pack' pictorial health warning labels and calorie information labels on drink choice: a laboratory experiment. Appetite 2020;145:104484. - PMC - PubMed
Maynard 2018 {published data only}
    1. Maynard OM, Langfield T, Attwood AS, Allen E, Drew I, Votier A, et al. No impact of calorie or unit information on ad libitum alcohol consumption. Alcohol and Alcoholism 2018;53(1):12-9. - PMC - PubMed
Mazza 2018 {published data only}
    1. Mazza MC, Dynan L, Siegel RM, Tucker AL. Nudging healthier choices in a hospital cafeteria: results from a field study. Health Promotion Practice 2018;19(6):925-34. - PubMed
McCrickerd 2020 {published data only}
    1. McCrickerd K, Tang CS, Forde CG. The independent and combined impact of front-of-pack labelling and sensory quality on calorie estimations and portion selection of commercial food products. Food Quality and Preference 2020;79:103766.
McElroy 2016 {published data only}
    1. McElroy K, Clements M, Feehan O, Cronin BE, Griffin B, Douglas FE, et al. Calories on menus: does impact diminish with duration or flourish after festivities? Proceedings of the Nutrition Society 2016;75:E87.
McInerney 2017 {published data only}
    1. McInerney M, Hutchins M, Peterson Y, Honselman C. Menu labels decrease the number of calories selected from fast-food restaurants among college students: a pilot study. Journal of the Academy of Nutrition and Dietetics 2017;117(9):A90.
Montford 2017 {published data only}
    1. Montford WJ. Informing consumer decision-making: two empirical studies. Dissertation Abstracts International Section A: Humanities and Social Sciences 2017;77:11-A(E).
Muller 2020a {published data only}
    1. Muller L, Ruffieux B. What makes a front-of-pack nutritional labelling system effective: the impact of key design components on food purchases. Nutrients 2020;12(9):1-25. - PMC - PubMed
Muller 2020b {published data only}
    1. Muller L, Ruffieux B. What makes a front-of-pack nutritional labelling system effective: the impact of key design components on food purchases. Research Papers In Economics 2020. - PMC - PubMed
Nassab 2017 {published data only}
    1. Nassab K. The effect of caloric labeling on consumers calorie intake. https://scholarexchange.furman.edu/scjas/2017/all/86 (accessed prior to 5 December 2024).
NCT03553043 {published data only}
    1. NCT03553043. Energy labelling for alcohol drinks in New Zealand: consumers perceptions and impacts on purchase behaviour. clinicaltrials.gov/study/NCT03553043 (first received 20 May 2018).
NCT03761342 {published data only}
    1. NCT03761342. Evaluating the relative effectiveness of two front-of-pack nutrition labels. clinicaltrials.gov/study/NCT03761342 (first received 28 November 2018). [REGISTRATION: https://clinicaltrials.gov/show/NCT03761342 2018.]
NCT04172337 {published data only}
    1. NCT04172337. Testing the effects of Singapore's front-of-pack healthier choice symbol label with or without a physical activity equivalent label. clinicaltrials.gov/study/NCT04172337 (first received 18 November 2019). [REGISTRATION: https://clinicaltrials.gov/show/NCT04172337]
NCT04252898 {published data only}
    1. NCT04252898. Impact of a front-of-pack nutrition labelling on food purchases in contract catering. clinicaltrials.gov/study/NCT04252898 (first received 24 January 2020). [https://explore.openalex.org/works/W4241218153]
Neal 2017 {published data only}
    1. ACTRN12614000964617. The effects of four front-of-pack labelling schemes compared to standard Nutrition Information Panel, on the healthiness of food purchases among adult Australian consumers [The effects of four front-of-pack labelling schemes compared to standard Nutrition Information Panel, on mean nutrient profiling score of food purchases among adult Australian consumers: a randomised trial]. www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366945 (first received 21 August 2014). [www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366945 (first received 21 August 2014). [CRS ID: 7222224]]
    1. Neal B, Crino M, Dunford E, Gao A, Greenland R, Li N, et al. Effects of different types of front-of-pack labelling information on the healthiness of food purchases – a randomised controlled trial. Nutrients 2017;9(112):1284. - PMC - PubMed
Neuhofer 2020 {published data only}
    1. Neuhofer Z, McFadden BR, Rihn A, Wei X, Khachatryan H, House L. Can the updated nutrition facts label decrease sugar-sweetened beverage consumption? Economics and Human Biology 2020;37:100867. - PubMed
Ni Mhurchu 2017 {published data only}
    1. Ni Mhurchu N, Volkova E, Jiang Y, Eyles H, Michie J, Neal B, et al. Effects of interpretive nutrition labels on consumer food purchases: the Starlight randomized controlled trial. American Journal of Clinical Nutrition 2017;105(3):695-704. - PubMed
Nordström 2020 {published data only}
    1. Nordström J, Thunström L, Van't Veld K, Shogren JF, Ehmke M. Strategic ignorance of health risk: its causes and policy consequences. Behavioural Public Policy 2020;7:83-114.
Oh 2020 {published data only}
    1. Oh GE, Huh YE, Mukhopadhyay A. Informed indulgence: the effects of nutrition information provision and dietary restraint on consecutive food consumption decisions. Psychology & Health 2020;36:1314-35. - PubMed
Otto 2020 {published data only}
    1. Otto AS, Davis B, Wakefield K, Clarkson JJ, Inman J. Consumer strategies to improve the efficacy of posted calorie information: how provincial norms nudge consumers to healthier consumption. Journal of Consumer Affairs 2020;54(1):311-41.
Rayner 2017 {published data only}
    1. Rayner M, Harrington R, Scarborough P. The impact of the UK traffic-light labelling system on diets. Annals of Nutrition & Metabolism 2017;71:101-2.
Reinhardt 2019 {published data only}
    1. Reinhardt D, Hurtienne J. Only one item left? Heuristic information trumps calorie count when supporting healthy snacking under low self-control. 2019 CHI Conference on Human Factors in Computing Systems; 2019 May 4-8; Glasgow (UK).
Rising 2017 {published data only}
    1. Rising CJ, Bol N. Nudging our way to a healthier population: the effect of calorie labeling and self-control on menu choices of emerging adults. Health Communication 2017;32(8):1032-8. - PubMed
Sandoval 2017 {published data only}
    1. Sandoval LA, Carpio CE, Sanchez M, Borja I, Cabrera T. The effect of 'traffic-light' nutritional labelling on carbonated soft drink purchases in Ecuador. Agricultural & Applied Economics Association Annual Meeting; 2017 July 30-August 1; Chicago (IL).
Scourboutakos 2016 {published data only}
    1. Scourboutakos MJ. Eating-out: a study of the nutritional quality of Canadian chain restaurant foods and interventions to promote healthy eating. Dissertation Abstracts International: Section B: The Sciences and Engineering 2016;78:9-B(E).
Seyedhamzeh 2020 {published data only}
    1. Seyedhamzeh S, Nedjat S, Hosseini H, Shakibazedeh E, Viera AJ, Dorosty M, et al. Potential effect of different nutritional labels on food choices among mothers: a study protocol. BMC Public Health 2020;20(1):294. - PMC - PubMed
Shin 2020 {published data only}
    1. Shin S, Dam RM, Finkelstein EA. The effect of dynamic food labels with real-time feedback on diet quality: results from a randomized controlled trial. Nutrients 2020;12(7):2158. - PMC - PubMed
Shoychet 2023 {published data only}
    1. Shoychet G, Lowe CJ, Bodell LP. Does menu labelling influence food choice and consumption in female undergraduate students? Canadian Journal Of Behavioural Science 2023;55(3):220-7. [DOI: 10.1037/cbs0000336] - DOI
Silva 2022 {published data only}
    1. Silva A, Mhurchu CN, Anastácio LR. Comparison of two front-of-pack nutrition labels for Brazilian consumers using a smartphone app in a real-world grocery store: a pilot randomized controlled study. Frontiers in Nutrition 2022;9:898021. [DOI: 10.3389/fnut.2022.898021] - DOI - PMC - PubMed
Tangari 2019 {published data only}
    1. Tangari AH, Bui M, Haws KL, Liu PJ. That's not so bad, I'll eat more! Backfire effects of calories-per-serving information on snack consumption. Journal of Marketing 2019;83(1):133-50.
Tapper 2019 {published data only}
    1. Tapper K, Yarrow K, Farrar S, Mandeville K. The effect of calorie labelling, motivation and habits on the calorie content of items selected from a coffee shop menu. 43rd Meeting of the British Feeding and Drinking Group; 2019 Apr 16-17; Swansea (UK).
Tapper 2021a {published data only}
    1. Tapper K, Yarrow K, Farrar S, Mandeville K. The effect of calorie labeling, motivation and habits on the calorie content of items selected from a university coffee shop menu. Obesity Facts 2021;14:39.
Thunstrom 2018 {published data only}
    1. Thunstrom L. Incidence of an emotional tax: the case of calorie menu labeling. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=3272036 (accessed prior to 5 December 2024). [papers.ssrn.com/sol3/papers.cfm?abstract_id=3272036]
Thunstrom 2019 {published data only}
    1. Thunstrom L. Welfare effects of nudges: the emotional tax of calorie menu labeling. Judgment and Decision Making 2019;14(1):11-25.
Turnwald 2019a {published data only}
    1. Turnwald BP, Bertoldo JD, Perry MA, Policastro P, Timmons M, Bosso C, et al. Increasing vegetable intake by emphasizing tasty and enjoyable attributes: a randomized controlled multisite intervention for taste-focused labeling. Psychological Science 2019;30(11):1603-15. - PMC - PubMed
Turnwald 2019b {published data only}
    1. Turnwald BP, Crum AJ. Smart food policy for healthy food labeling: leading with taste, not healthiness, to shift consumption and enjoyment of healthy foods. Preventive Medicine 2019;119:7-13. - PMC - PubMed
Urminsky 2019 {published data only}
    1. Urminsky O, Goswami I. The 'mere reminder' effect of salient calorie labeling. https://ssrn.com/abstract=3448160 (accessed prior to 5 December 2024).
VanEpps 2021 {published data only}
    1. VanEpps EM, Molnar A, Downs JS, Loewenstein G. Choosing the light meal: real-time aggregation of calorie information reduces meal calories. Journal of Marketing Research 2021;58(5):948-67. [DOI: 10.1177/00222437211022367] - DOI
Vermeer 2011 {published data only}
    1. Vermeer WM, Steenhuis IH, Leeuwis FH, Bos AE, De Boer M, Seidell JC. View the label before you view the movie: a field experiment into the impact of portion size and guideline daily amounts labelling on soft drinks in cinemas. BMC Public Health 2011;11:438. - PMC - PubMed
Viera 2017 {published data only}
    1. Viera AJ, Tuttle L, Olsson E, Gras-Najjar J, Gizlice Z, Hales D, et al. Effects of physical activity calorie expenditure (PACE) labeling: study design and baseline sample characteristics. BMC Public Health 2017;17(1):702. - PMC - PubMed
Viera 2019 {published data only}
    1. Viera AJ, Gizlice Z, Tuttle L, Olsson E, Gras-Najjar J, Hales D, et al. Effect of calories-only vs physical activity calorie expenditure labeling on lunch calories purchased in worksite cafeterias. BMC Public Health 2019;19(1):107. - PMC - PubMed
Wansink 2006 {published data only}
    1. Wansink B, Chandon P. Can "Low-Fat" nutrition labels lead to obesity? Journal of Marketing Research 2006;43(4):605-17. [Study 1 of three presented in the paper]
Whitt 2017 {published data only}
    1. Whitt O, Pitts S, Jilcott B, Rafferty AP, Payne CR, Ng SW. The effects of traffic light labelling versus cartoon labelling on food and beverage purchases in a children's hospital setting. Pediatric Obesity 2018;13:265-8. [DOI: 10.1111/ijpo.12232] - DOI - PubMed
Zhang 2020 {published data only}
    1. Zhang S, Zhou L, Zhao Y. How to present calorie information on the electronic menu to help people order more healthily. 22nd International Conference On Human-Computer Interaction; 2020 Jul 19-24; Copenhagen (Denmark).

References to studies awaiting assessment

Clements 2016 {published data only}
    1. Clements M, Feehan O, McElroy K, Griffin B, Cronin BE, Douglas FE, et al. Calories on menus and that 'Friday feeling'. Proceedings of the Nutrition Society 2016;75 (OCE3):E89.
Dos Santos 2015 {published data only}
    1. Dos Santos, De Souza B, Hansen G, Perez-Cueto FJ. The effects of nudging in coffee machines on two types of companies in Denmark. Annals of Nutrition & Metabolism 2015;67:516.
Elshiewy 2022 {published data only}
    1. Elshiewy O. The impact of voluntary front-of-pack nutrition-label introduction on purchase behavior. Dissertation.
Girz ongoing {unpublished data only}
    1. Girz L. The Impact of calorie labels and a confederate on ordering behaviour. In process.
Lee 2018 {published data only}
    1. Lee S. Impacts of calorie information and BMI rate on consumers' decisions at the point of purchase in fast food restaurants. Gwan'gwang Yeon'gu 2018;33:433-46. [DOI: 10.21719/ijtms.33.8.23] - DOI
Petimar 2022 {published data only}
    1. Petimar J, Grummon AH, Zhang F, Gortmaker SL, Moran AJ, Polacsek M, et al. Assessment of calories purchased after calorie labeling of prepared foods in a large supermarket chain. JAMA Internal Medicine 2022;182(9):965. [DOI: 10.1001/jamainternmed.2022.3065] - DOI - PMC - PubMed
van Doorn 2023 {published data only}
    1. Doorn J, Luiting-Drijfhout M, Ittersum K. Waste on impulse? Food ordering, calorie intake and waste in out-of-home consumption. Journal of Business Research 2023;165:114035-5. [DOI: 10.1016/j.jbusres.2023.114035] - DOI
Zhu 2023 {published data only}
    1. Zhu C, Lopez RA, Zhen C, Zhao Q. Consumer responses to nutrition labels in China. Journal of the Agricultural and Applied Economics Association 2023;2:278-94. [DOI: 10.1002/jaa2.57] - DOI

Additional references

Adams 2016
    1. Adams J, Mytton O, White M, Monsivais P. Why are some population interventions for diet and obesity more equitable and effective than others? The role of individual agency. PLOS Medicine 2016;13(4):e1001990. [DOI: 10.1371/journal.pmed.1001990] - DOI - PMC - PubMed
Aguenaou 2021
    1. Aguenaou H, El Ammari L, Bigdeli M, El Hajjab A, Lahmam H, Labzizi S, et al. Comparison of appropriateness of Nutri-Score and other front-of-pack nutrition labels across a group of Moroccan consumers: awareness, understanding and food choices. Archives of Public Health 2021;79:71. [DOI: 10.1186/s13690-021-00595-3] - DOI - PMC - PubMed
Alcohol and Tobacco Trade and Tax Bureau 2021
    1. Alcohol and Tobacco Trade and Tax Bureau. Alcohol beverage labeling: statements related to calorie and nutrient content, serving facts, alcohol facts, and sugar content. https://www.ttb.gov/labeling-wine/alcohol-beverage-labeling (accessed prior to 5 December 2024).
Ameye 2019
    1. Ameye H, Swinnen J. Obesity, income and gender: the changing global relationship. Global Food Security 2019;23:267-81. [DOI: 10.1016/j.gfs.2019.09.003] - DOI
Anderson 2021
    1. Anderson P, O'Donnell A, Kaner E, Llopis EJ, Manthey J, Rehm J. Impact of minimum unit pricing on alcohol purchases in Scotland and Wales: controlled interrupted time series analyses. Lancet. Public Health 2021;6(8):E557-65. [DOI: 10.1016/S2468-2667(21)00052-9] - DOI - PubMed
Atkinson 2024
    1. Atkinson AM, Meadows BR, Hobin E, Vanderlee LM, Sumnall H. Qualitative analysis of UK women's attitudes to calorie-based alcohol marketing and alcohol calorie labelling. Health Promotion International 2024;39(1):daae006. [DOI: 10.1093/heapro/daae006] - DOI - PMC - PubMed
Bann 2017
    1. Bann D, Johnson W, Li L, Kuh D, Hardy R. Socioeconomic inequalities in body mass index across adulthood: coordinated analyses of individual participant data from three British birth cohort studies initiated in 1946, 1958 and 1970. PLOS Medicine 2017;14(1):e1002214. [DOI: 10.1371/journal.pmed.1002214] - DOI - PMC - PubMed
Basto‐Abreu 2018
    1. Basto-Abreu A, Braverman-Bronstein A, Camacho-García-Formentí D, Zepeda-Tello R, Popkin BM, et al. Expected changes in obesity after reformulation to reduce added sugars in beverages: a modeling study. PLOS Medicine 2018;15(10):e1002664. [DOI: 10.1371/journal.pmed.1002664] - DOI - PMC - PubMed
Benton 2017
    1. Benton D, Young HA. Reducing calorie intake may not help you lose body weight. Perspectives on Psychological Science 2017;12(5):703-714. [DOI: 10.1177/1745691617690878] - DOI - PMC - PubMed
Bhawra 2022
    1. Bhawra J, Kirkpatrick SI, Hall MG, Vanderlee L, Thrasher JF, Hammond D. Correlates of self-reported and functional understanding of nutrition labels across 5 countries in the 2018 international food policy study. Journal of Nutrition 2022;152(Suppl 1):13S-24S. [DOI: 10.1093/jn/nxac018] - DOI - PMC - PubMed
Blackwell 2018
    1. Blackwell AK, Drax K, Attwood AS, Munafò MR, Maynard OM. Informing drinkers: can current UK alcohol labels be improved? Drug and Alcohol Dependence 2018;192:163-70. [DOI: 10.1016/j.drugalcdep.2018.07.032] - DOI - PMC - PubMed
Brimblecombe 2020
    1. Brimblecombe J, McMahon E, Ferguson M, De Silva K, Peeters A, Miles E, et al. Effect of restricted retail merchandising of discretionary food and beverages on population diet: a pragmatic randomised controlled trial. Lancet Planetary Health 2020;4(10):e463-e473. [DOI: 10.1016/S2542-5196(20)30202-3] - DOI - PubMed
Burris 2018
    1. Burris S. Taking opportunity costs seriously in public health law. Public Health Reports 2018;133(6):726-8. [DOI: 10.1177/0033354918805741] - DOI - PMC - PubMed
Campbell 2020
    1. Campbell M, McKenzie JE, Sowden A, Katikireddi SV, Brennan SE, Ellis S, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ (Clinical Research Ed.) 2020;368:l6890. [DOI: 10.1136/bmj.l6890] - DOI - PMC - PubMed
Capewell 2018
    1. Capewell S, Lloyd-Williams F. The role of the food industry in health: lessons from tobacco? British Medical Bulletin 2021;125(1):131-43. [DOI: 10.1093/bmb/ldy002] - DOI - PubMed
Clarke 2021a
    1. Clarke N, Pechey E, Kosīte D, König LM, Mantzari E, Blackwell AK, et al. Impact of health warning labels on selection and consumption of food and alcohol products: systematic review with meta-analysis. Health Psychology Review 2021;15(3):430-53. [DOI: 10.1080/17437199.2020.1780147] - DOI - PMC - PubMed
Clarke 2021c
    1. Clarke N, Blackwell AK, De-Loyde K, Pechey E, Hobson A, Pilling M, et al. Health warning labels and alcohol selection: a randomised controlled experiment in a naturalistic shopping laboratory. Addiction (Abingdon, England) 2021;116(12):3333-45. [DOI: 10.1111/add.15519] - DOI - PubMed
Clarke 2023b
    1. Clarke N, Blackwell AK, Ferrar J, De-loyde K, Pilling MA, Munafo MR, et al. Impact on alcohol selection and online purchasing of changing the proportion of available non-alcoholic versus alcoholic drinks: a randomised controlled trial. PLOS Medicine 2023;20(3):e1004193. [DOI: 10.1371/journal.pmed.1004193] - DOI - PMC - PubMed
Cook 2000
    1. Cook A, Pryer J, Prakash S. The problem of accuracy in dietary surveys. Analysis of the over 65 UK National Diet and Nutrition Survey. Journal of Epidemiology and Community Health 2000;54:611-6. - PMC - PubMed
Cowburn 2005
    1. Cowburn G, Stockley L. Consumer understanding and use of nutrition labelling: a systematic review. Public Health Nutrition 2005;8(1):21-8. - PubMed
Crockett 2018
    1. Crockett RA, King SE, Marteau TM, Prevost AT, Stubbs B, Bignardi G, et al. Nutritional labelling for healthier food or non-alcoholic drink purchasing and consumption. Cochrane Database of Systematic Reviews 2018, Issue 2. Art. No: CD009315. [DOI: 10.1002/14651858.CD009315.pub2] - DOI - PMC - PubMed
Croker 2020
    1. Croker H, Packer J, Russell S, Stansfield C, Viner RM. Front of pack nutritional labelling schemes: a systematic review and meta-analysis of recent evidence relating to objectively measured consumption and purchasing. Journal of Human Nutrition and Dietetics 2020;33:518-37. [DOI: 10.1111/jhn.12758] - DOI - PubMed
Cuello‐Garcia 2022
    1. Cuello-Garcia CA, Santesso N, Morgan RL, Verbeek J, Thayer K, Ansari MT, et al. GRADE guidance 24 optimizing the integration of randomized and non-randomized studies of interventions in evidence syntheses and health guidelines. Journal of Clinical Epidemiology 2022;142:200-8. [DOI: 10.1016/j.jclinepi.2021.11.026] - DOI - PMC - PubMed
Daley 2020
    1. Daley AJ, McGee E, Bayliss S, Coombe A, Parretti HM. Effects of physical activity calorie equivalent food labelling to reduce food selection and consumption: systematic review and meta-analysis of randomised controlled studies. Journal of Epidemiology and Community Health 2020;74(3):269-75. [DOI: 10.1136/jech-2019-213216] - DOI - PubMed
Das 2012
    1. Das P, Horton R. Rethinking our approach to physical activity. Lancet 2012;80(9838):189-90. [DOI: 10.1016/S0140-6736(12)61024-1] - DOI - PubMed
De‐loyde 2024
    1. De-loyde K, Ferrar J, Pilling MA, Hollands GJ, Clarke N, Matthews J, et al. The impact of introducing alcohol-free beer options in bars and public houses on alcohol sales and revenue: a randomised crossover field trial. Addiction (Abingdon, England) 2024;119(6):1071-9. [DOI: 10.1111/add.16449] - DOI - PubMed
Deeks 2023
    1. Deeks JJ, Higgins JP, Altman DG. Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (updated August 2023). Cochrane, 2023. Available from training.cochrane.org/handbook.
DeGroot 2012
    1. DeGroot MH, Schervish MJ. Probability and Statistics. 4th edition. Boston (MA): Addison-Wesley, 2012.
Department of Health 2011
    1. Department of Health. Statement of the Calorie Reduction Expert Group (policy paper). http://www.gov.uk/government/publications/statement-of-the-calorie-reduc.... (accessed prior to 5 December 2024).
Department of Health and Social Care 2018a
    1. Department of Health and Social Care. Mandating energy labelling of food and drink in out-of-home settings (Impact Assessment IA No: 13009 (Consultation stage)). https://assets.publishing.service.gov.uk/government/uploads/system/uploa... (accessed prior to 5 December 2024).
Department of Health and Social Care 2020
    1. Department of Health and Social Care. Tackling obesity: empowering adults and children to live healthier lives. http://www.gov.uk/government/publications/tackling-obesity-government-st... (accessed prior to 8 May 2021).
Department of Health and Social Care 2021
    1. Department of Health and Social Care. Calorie labelling in the out of home sector: implementation guidance. https://www.gov.uk/government/publications/calorie-labelling-in-the-out-... (accessed prior to 5 December 2024).
Department of Health and Social Care 2022
    1. New obesity treatments and technology to save the NHS billions. https://www.gov.uk/government/news/new-obesity-treatments-and-technology... (accessed prior to 5 December 2024).
Department of Health and Social Care 2018b
    1. Department of Health and Social Care. Childhood obesity: a plan for action, Chapter 2; June 2018. https://assets.publishing.service.gov.uk/government/uploads/system/uploa... (accessed prior to 5 December 2024).
Dobbs 2014
    1. Dobbs R, Sawers C, Thompson F, Manyika J, Woetzel J, Child P, et al. Overcoming obesity: an initial economic analysis. McKinsey Global Institute; 1 November 2014. http://www.mckinsey.com/insights/economic studies/how the world could better fight obesity (accessed prior to 8 May 2021).
Duffy 2023
    1. Duffy F, Peebles I, Maloney E, Robertson MD, Sharpe H. Individuals with restrictive eating disorders' experience of the introduction of calories on menus in England: an interpretative phenomenological analysis study. European Eating Disorders Review 2023;31(6):802-12. [DOI: 10.1002/erv.3007] - DOI - PubMed
Dumanovsky 2011
    1. Dumanovsky T, Huang CY, Nonas CA, Matte TD, Bassett MT, Silver LD, et al. Changes in energy content of lunchtime purchases from fast food restaurants after introduction of calorie labelling: cross sectional customer surveys. BMJ (Clinical Research Ed.) 2011;343:d4464. - PMC - PubMed
Eldridge 2020
    1. Eldridge S, Campbell MK, Campbell MJ, Drahota AK, Giraudeau B, Reeves BC, et al. Revised Cochrane risk of bias tool for randomized trials (RoB 2). Additional considerations for cluster-randomized trials (RoB 2 CRT); 10 November 2020. http://training.cochrane.org/sites/training.cochrane.org/files/public/up... (accessed prior to 5 December 2024).
EPOC 2017
    1. Cochrane Effective Practice and Organisation of Care (EPOC). Analysis in EPOC reviews. EPOC resources for review authors; 13 March 2019. http://www.epoc.cochrane.org/sites/epoc.cochrane.org/files/public/upload... (accessed prior to 5 December 2024).
European Food Information Council 2018
    1. European Food Information Council (EUFIC). Global Update on Nutrition Labelling; the 2018 edition. http://www.eufic.org/en/healthy-living/article/global-update-on-nutritio....
European Union 2011
    1. European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. Official Journal of the European Union L304 of November 2011:18-63.
Fanzo 2021
    1. Fanzo J, Bellows AL, Spiker ML, Thorne-Lyman AL, Bloem MW. The importance of food systems and the environment for nutrition. American Journal of Clinical Nutrition 2021;113:7-16. [DOI: 10.1093/ajcn/nqaa313] - DOI - PMC - PubMed
Feteira‐Santos 2020
    1. Feteira-Santos R, Fernandes J, Virgolino A, Alarcão V, Sena C, Vieira CP, et al. Effectiveness of interpretive front-of-pack nutritional labelling schemes on the promotion of healthier food choices: a systematic review. International Journal of Evidence-Based Healthcare 2020;18(1):24-37. [DOI: 10.1097/XEB.0000000000000214] - DOI - PubMed
Food and Drug Administration 2014
    1. Food and Drug Administration. Food labeling; nutrition labeling of standard menu items in restaurants and similar retail food establishments. https://www.federalregister.gov/documents/2014/12/01/2014-27833/food-lab... (accessed prior to 5 December 2024). - PubMed
Food and Drug Administration 2016
    1. Food and Drug Administration (FDA). Guide to creating a front of pack (FoP) nutrition label for pre-packaged products sold through retail outlets; updated November 2016. http://www.food.gov.uk/sites/default/files/media/document/fop-guidance_0... (accessed prior to 5 December 2024).
Food Standards Agency 2021
    1. Food Standards Agency. Guidance on voluntary energy labelling for out of home businesses in Northern Ireland. https://www.food.gov.uk/sites/default/files/media/document/calorie-wise-... (accessed prior to 5 December 2024).
Gardner 2022
    1. Gardner B, Lally P. Habit and habitual behaviour. Health Psychology Review 2022;17(3):490-6. [DOI: 10.1080/17437199.2022.2105249] - DOI - PubMed
Glanz 2005
    1. Glanz K, Sallis JF, Saelens BE, Frank LD. Healthy nutrition environments: concepts and measures. American Journal of Health Promotion 2005;19(5):330-3. [DOI: 10.4278/0890-1171-19.5.330] - DOI - PubMed
Government of Ontario 2023
    1. Government of Ontario. Calorie display requirements. https://www.ontario.ca/document/guide-menu-labelling-requirements/calori... (accessed prior to 5 December 2024).
Grummon 2020
    1. Grummon AH, Hall MG. Sugary drink warnings: a meta-analysis of experimental studies. PLOS Medicine 2020;17(5):e1003120. - PMC - PubMed
Grummon 2021
    1. Grummon A, Petimar J, Zhang F, Rao A, Gortmaker SL, Rimm EB, et al. Calorie labeling and product reformulation: a longitudinal analysis of supermarket prepared foods. American Journal of Preventive Medicine 2021;61(3):377-85. [DOI: 10.1016/j.amepre.2021.03.013] - DOI - PMC - PubMed
Guyatt 2011
    1. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction – GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 2011;64(4):383-94. - PubMed
Health Survey for England 2018
    1. Health Survey for England (HSE). Health Survey for England 2018. Overweight and obesity in adults and children; 3 December 2019. http://files.digital.nhs.uk/52/FD7E18/HSE18-Adult-Child-Obesity-rep.pdf (accessed prior to 5 December 2024).
Higgins 2021b
    1. Higgins JP, Eldridge S, Li T, Sterne J (editors), on behalf of the RoB 2 working group on crossover trials. Revised Cochrane risk of bias tool for randomized trials (RoB 2). Additional considerations for crossover trials; 18 March 2021. http://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/rob-2-f... (accessed prior to 5 December 2024).
Higgins 2023
    1. Higgins JP, Eldridge S, Li T. Chapter 23: Including variants on randomized trials. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (updated August 2023). Cochrane, 2023. Available from training.cochrane.org/handbook.
Hollands 2012
    1. Hollands GJ, Whitwell SC, Parker RA, Prescott NJ, Forbes A, Sanderson J, et al. Effect of communicating DNA based risk assessments for Crohn's disease on smoking cessation: randomised controlled trial. BMJ (Clinical Research Ed.) 2012;345:e4708. [DOI: 10.1136/bmj.e4708] - DOI - PMC - PubMed
Hollands 2013
    1. Hollands GJ, Shemilt I, Marteau TM, Jebb SA, Kelly MP, Nakamura R, et al. Altering choice architecture to change population health behaviour: a large-scale conceptual and empirical scoping review of interventions within micro-environments. https://www.repository.cam.ac.uk/handle/1810/245108 (accessed prior to 5 December 2024).
Hollands 2016
    1. Hollands GJ, Marteau TM, Fletcher PC. Nonconscious processes in changing health-related behaviour: a conceptual analysis and framework. Health Psychology Review 2016;10(4):381-94. [DOI: 10.1080/17437199.2015.1138093] - DOI - PMC - PubMed
Hollands 2017
    1. Hollands GJ, Bignardi G, Johnston M, Kelly MP, Ogilvie D, Petticrew M, et al. The TIPPME intervention typology for changing environments to change behaviour. Nature Human Behaviour 2017;1:0140.
Hollands 2019
    1. Hollands GJ, Carter P, Anwer S, King SE, Jebb SA, Ogilvie D, et al. Altering the availability or proximity of food, alcohol, and tobacco products to change their selection and consumption. Cochrane Database of Systematic Reviews 2019, Issue 8. Art. No: CD012573. [DOI: 10.1002/14651858.CD012573.pub2] - DOI - PMC - PubMed
Hollands 2024
    1. Hollands GJ, South E, Shemilt I, Oliver S, Thomas J, Sowden AJ. Methods used to conceptualise dimensions of health equity impacts of public health interventions in systematic reviews. Journal of Clinical Epidemiology 2024;169:111312. [DOI: 10.1016/j.jclinepi.2024.111312] - DOI - PubMed
Kerins 2020
    1. Kerins C, McHugh S, McSharry J, Reardon CM, Hayes C, Perry IJ, et al. Barriers and facilitators to implementation of menu labelling interventions from a food service industry perspective: a mixed methods systematic review. International Journal of Behavioral Nutrition and Physical Activity 2020;17:49. [DOI: 10.1186/s12966-020-00948-1] - DOI - PMC - PubMed
Lacy‐Nichols 2022
    1. Lacy-Nichols J, Marten R, Crosbie E, Moodie R. The public health playbook: ideas for challenging the corporate playbook. Lancet Global Health 2022;10(7):E1067-72. [DOI: 10.1016/S2214-109X(22)00185-1] - DOI - PMC - PubMed
Lawson 2018
    1. Lawson GM, Hook CJ, Farah MJ. A meta-analysis of the relationship between socioeconomic status and executive function performance among children. Developmental Science 2018;21:e12529. [DOI: 10.1111/desc.12529] - DOI - PMC - PubMed
Lefebvre 2023
    1. Lefebvre C, Glanville J, Briscoe S, Featherstone R, Littlewood A, Metzendorf M-I, et al. Technical Supplement to Chapter 4: Searching for and selecting studies. Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (updated August 2023). Cochrane, 2023. Available from training.cochrane.org/handbook.
Lorenc 2013
    1. Lorenc T, Petticrew M, Welch V, Tugwell P. What types of interventions generate inequalities? Evidence from systematic reviews. Journal of Epidemiology and Community Health 2013;67(2):190-3. [DOI: 10.1136/jech-2012-201257] - DOI - PubMed
Marteau 2012
    1. Marteau TM, Hollands GJ, Fletcher PC. Changing human behaviour to prevent disease: the importance of targeting automatic processes. Science 2012;337(6101):1492-5. - PubMed
Marteau 2022
    1. Marteau TM, Hollands GJ, Pechey R, Reynolds JP, Jebb SA. Changing the assortment of available food and drink for leaner, greener diets. BMJ (Clinical Research Ed.) 2022;377:e069848. [DOI: 10.1136/bmj-2021-069848] - DOI - PubMed
Marteau 2023a
    1. Marteau TM, Hollands GJ, Nambiar D, Munafò MR. Changing behaviour at scale to prevent NCDs. In: Noncommunicable Diseases: a Compendium. Abingdon (UK): Routledge, 2023:347-54. [DOI: 10.4324/9781003306689-52] - DOI
Marteau 2023b
    1. Marteau TM. Evidence-neglect: addressing a barrier to UK health and climate policy ambitions. Science & Public Policy 2023;50(6):1103-9. [DOI: 10.1093/scipol/scad021] - DOI
McGuinness 2021
    1. McGuinness LA, Higgins JP. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Research Synthesis Methods 2021;12(1):55-61. [DOI: 10.1002/jrsm.1411] - DOI - PubMed
McKenzie 2023
    1. McKenzie JE, Brennan SE. Chapter 12: Synthesizing and presenting findings using other methods. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (updated August 2023). Cochrane, 2023. Available from training.cochrane.org/handbook.
Muller 2016
    1. Muller L, Prevost M. What cognitive sciences have to say about the impacts of nutritional labelling formats. Journal of Economic Psychology 2016;55:17-29. [DOI: 10.1016/j.joep.2016.01.005] - DOI
Mytton 2020
    1. Mytton OT, Boyland E, Adams J, Collins B, O'Connell M, Russell SJ, et al. The potential health impact of restricting less-healthy food and beverage advertising on UK television between 05.30 and 21.00 hours: a modelling study. PLOS Medicine 2020;17(10):e1003212. [DOI: 10.1371/journal.pmed.1003212] - DOI - PMC - PubMed
NCD Countdown 2020
    1. NCD Countdown 2030 collaborators. NCD Countdown 2030: pathways to achieving Sustainable Development Goal target 3.4. Lancet 2020;396(10255):918-34. [DOI: 10.1016/S0140-6736(20)31761-X] - DOI - PMC - PubMed
NHS Digital 2019
    1. NHS Digital. National Child Measurement Programme, England 2018/19 School Year [NS]; October 2019. http://digital.nhs.uk/data-and-information/publications/statistical/nati... (accessed prior to 8 May 2021).
Obesity Evidence Hub 2021
    1. Obesity Evidence Hub. Kilojoule labelling in fast food outlets. https://www.obesityevidencehub.org.au/collections/prevention/kilojoule-l... (accessed 6 January 2025).
Page 2021
    1. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical Research Ed.) 2021;372:n71. [DOI: 10.1136/bmj.n71] - DOI - PMC - PubMed
Polden 2023
    1. Polden M, Jones A, Adams J, Bishop T, Burgoine T, Essman M, et al. Kilocalorie labelling in the out-of-home sector: an observational study of business practices and consumer behaviour prior to implementation of the mandatory calorie labelling policy in England, 2022. BMC Public Health 2023;23:1088. [DOI: 10.1186/s12889-023-16033-8] - DOI - PMC - PubMed
Public Health England 2018
    1. Public Health England. Calorie reduction: the scope and ambition for action; March 2018. https://assets.publishing.service.gov.uk/government/uploads/system/uploa... (accessed prior to 5 December 2024).
Public Health England 2020
    1. Public Health England. NDNS: results from years 9 to 11 (2016 to 2017 and 2018 to 2019). https://www.gov.uk/government/statistics/ndns-results-from-years-9-to-11... (accessed prior to 5 December 2024).
Putra 2023
    1. Putra I, Polden M, Wareing L, Robinson E. Acceptability and perceived harm of calorie labelling and other obesity policies: a cross-sectional survey study of UK adults with eating disorders and other mental health conditions. PsyArXiv 2023. [DOI: 10.31234/osf.io/cxaw7] - DOI - PMC - PubMed
Qureshi 2022
    1. Qureshi R, Mayo-Wilson E, Li T. Harms in Systematic Reviews Paper 1: an introduction to research on harms. Journal of Clinical Epidemiology 2022;143:186-96. [DOI: 10.1016/j.jclinepi.2021.10.023] - DOI - PMC - PubMed
Reeves 2020
    1. Reeves B, Deeks J, Higgins JP, Shea B, Tugwell P, Wells GA, on behalf of the Cochrane Non-Randomized Studies of Interventions Methods Group. Chapter 24: Including non-randomized studies on intervention effects. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 6.1 (updated September 2020). Cochrane, 2020. Available from training.cochrane.org/handbook/archive/v6.1.
Rehm 2018
    1. Rehm J, Guiraud J, Poulnais R, Shield KD. Alcohol dependence and very high risk level of alcohol consumption: a life-threatening and debilitating disease. Addiction Biology 2018;23(4):961-8. [DOI: 10.1111/adb.12646] - DOI - PubMed
RevMan 2024 [Computer program]
    1. Review Manager (RevMan). Version 7.12.0. Copenhagen: The Cochrane Collaboration, 2024. Available at https://revman.cochrane.org.
Reynolds 2021
    1. Reynolds JP, Ventsel M, Kosīte D, Dames BR, Brocklebank L, Masterson S, et al. Impact of decreasing the proportion of higher energy foods and reducing portion sizes on food purchased in worksite cafeterias: a stepped-wedge randomised controlled trial. PLOS Medicine 2021;18(9):e1003743. [DOI: 10.1371/journal.pmed.1003743] - DOI - PMC - PubMed
Robinson 2019
    1. Robinson E, Burton S, Gough T, Jones A, Haynes A. Point of choice kilocalorie labelling in the UK eating out of home sector: a descriptive study of major chains. BMC Public Health 2019;19(1):649. [DOI: 10.1186/s12889-019-7017-5] - DOI - PMC - PubMed
Robinson 2021a
    1. Robinson E, Marty L, Jones A, White M, Smith R, Adams J. Will calorie labels for food and drink served outside the home improve public health? BMJ (Clinical Research Ed.) 2021;372:n40. [DOI: 10.1136/bmj.n40] - DOI - PubMed
Robinson 2021b
    1. Robinson E, Humphreys G, Jones A. Alcohol, calories, and obesity: a rapid systematic review and meta-analysis of consumer knowledge, support, and behavioral effects of energy labeling on alcoholic drinks. Obesity Reviews 2021;22:e13198. [DOI: 10.1111/obr.13198] - DOI - PubMed
Robinson 2023a
    1. Robinson E, Boyland E, Evans R, Finlay A, Halsall L, Humphreys G, et al. Energy labelling of alcoholic drinks: an important or inconsequential obesity policy? Obesity Science & Practice 2023;9(2):75-86. [DOI: 10.1002/osp4.638] - DOI - PMC - PubMed
Robinson 2023b
    1. Robinson E, Polden M, Langfield T, Clarke K, Calvert L, Colombet Z, et al. Socioeconomic position and the effect of energy labelling on consumer behaviour: a systematic review and meta-analysis. International Journal of Behavioral Nutrition and Physical Activity 2023;20:10. [DOI: 10.1186/s12966-023-01418-0] - DOI - PMC - PubMed
Royal Society for Public Health 2014
    1. Royal Society for Public Health. Increasing awareness of 'invisible' calories from alcohol; November 2014. http://www.rsph.org.uk/static/uploaded/979245d2-7b5d-4693-a9b3fb1b98b68d... (accessed prior to 5 December 2024).
Royal Society for Public Health 2018
    1. Royal Society for Public Health. Labelling the point: towards better alcohol health information; January 2018. https://www.rsph.org.uk/static/uploaded/4ae31b49-c4d7-4355-ad94a660aba36... (accessed prior to 5 December 2024).
Sarink 2016
    1. Sarink D, Peeters A, Freak-Poli R, Beauchamp A, Woods J, Ball K, et al. The impact of menu energy labelling across socioeconomic groups: a systematic review. Appetite 2016;99:59-75. [DOI: 10.1016/j.appet.2015.12.022] - DOI - PubMed
Schünemann 2021
    1. Schünemann HJ, Higgins JP, Vist GE, Glasziou P, Akl EA, Skoetz N, Guyatt GH. Chapter 14: Completing 'Summary of findings' tables and grading the certainty of the evidence. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 6.2. Cochrane, 2021. Available from training.cochrane.org/handbook.
Shangguan 2019
    1. Shangguan S, Afshin A, Shulkin M, Ma W, Marsden D, Smith J, et al. A meta-analysis of food labeling effects on consumer diet behaviors and industry practices. American Journal of Preventive Medicine 2019;56(2):300-14. [DOI: 10.1016/j.amepre.2018.09.024] - DOI - PMC - PubMed
Shaw 2023
    1. Shaw S, Barrett M, Shand C, Cooper C, Crozier S, Smith D, et al. Influences of the community and consumer nutrition environment on the food purchases and dietary behaviors of adolescents: a systematic review. Obesity Reviews 2023;24(7):e13569. [DOI: 10.1111/obr.13569] - DOI - PMC - PubMed
Sheeran 2016
    1. Sheeran P, Webb TL. The intention-behavior gap. Social and Personality Psychology Compass 2016;10(9):503-18. [DOI: 10.1111/spc3.12265] - DOI
Shelton 2014
    1. Shelton NJ, Knott CS. Association between alcohol calorie intake and overweight and obesity in English adults. American Journal of Public Health 2014;104(4):629-31. [DOI: 10.2105/AJPH.2013.301643] - DOI - PMC - PubMed
Shemilt 2013
    1. Shemilt I, Hollands GJ, Marteau TM, Nakamura R, Jebb SA, Kelly MP, et al. Economic instruments for population diet and physical activity behaviour change: a systematic scoping review. PLOS One 2013;8(9):e75070. [DOI: 10.1371/journal.pone.0075070] - DOI - PMC - PubMed
Sheron 2016
    1. Sheron N, Gilmore I. Effect of policy, economics, and the changing alcohol marketplace on alcohol related deaths in England and Wales. BMJ (Clinical Research Ed.) 2016;353:i1860. [DOI: 10.1136/bmj.i1860] - DOI - PubMed
Song 2021
    1. Song J, Brown MK, Tan M, MacGregor GA, Webster J, Campbell NR, et al. Impact of color-coded and warning nutrition labelling schemes: a systematic review and network meta-analysis. PLOS Medicine 2021;18(10):e1003765. [DOI: 10.1371/journal.pmed.1003765] - DOI - PMC - PubMed
Statistica 2019
    1. Statistica. UK: population, by age 2019. http://www.statista.com/statistics/281174/uk-population-by-age/ (accessed prior to 8 May 2021).
Sterne 2016a
    1. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ (Clinical Research Ed.) 2016;355:i4919. - PMC - PubMed
Sterne 2016b
    1. Sterne JA, Higgins JP, Elbers RG, Reeves BC, the development group for ROBINS-I. Risk of Bias In Non-randomized Studies of Interventions (ROBINS-I): detailed guidance; 2016. http://www.riskofbias.info (accessed April 2021).
Sterne 2019
    1. Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clinical Research Ed.) 2019;366:i4898. [DOI: 10.1136/bmj.l4898] - DOI - PubMed
Sterne 2020
    1. Sterne JA, Hernán MA, McAleenan A, Reeves BC, Higgins JP. Chapter 25: Assessing risk of bias in a non-randomized study. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 6.1 (updated September 2020). Cochrane, 2020. Available from training.cochrane.org/handbook/archive/v6.1.
Swinburn 1999
    1. Swinburn B, Egger G, Raza F. Dissecting obesogenic environments: the development and application of a framework for identifying and prioritizing environmental interventions for obesity. Preventive Medicine 1999;29(6):563-70. [DOI: 10.1006/pmed.1999.0585] - DOI - PubMed
Thomas 2020 [Computer program]
    1. EPPI-Reviewer: advanced software for systematic reviews, maps and other evidence synthesis. Thomas J, Graziosi S, Brunton J, Ghouze Z, O'Driscoll P, Bond M. London: UCL Social Research Institute: EPPI-Centre, 2020.
Tremmel 2017
    1. Tremmel M, Gerdtham U-G, Nilsson PM, Saha S. Economic burden of obesity: a systematic literature review. International Journal of Environmental Research and Public Health 2017;14(4):435. [DOI: 10.3390/ijerph14040435] - DOI - PMC - PubMed
Urban 2011
    1. Urban LE, McCrory MA, Dallal GE, Das SK, Saltzman E, Weber JL, et al. Accuracy of stated energy contents of restaurant foods. JAMA 2011;306(3):287-93. [DOI: 10.1001/jama.2011.993] - DOI - PMC - PubMed
Ventsel 2022
    1. Ventsel M, Pechey E, De-Loyde K, Pilling MA, Morris RW, Maistrello G, et al. Effect of health warning labels on motivation towards energy-dense snack foods: two experimental studies. Appetite 2022;175:106084. [DOI: 10.1016/j.appet.2022.106084] - DOI - PMC - PubMed
Waterlander 2018
    1. Waterlander WE, Ni Mhurchu C, Eyles H, Vandevijvere S, Cleghorn C, Scarborough P, et al. Food futures: developing effective food systems interventions to improve public health nutrition. Agricultural Systems 2018;160:124-31. [DOI: 10.1016/j.agsy.2017.01.006] - DOI
Welch 2012
    1. Welch V, Petticrew M, Tugwell P, Moher D, O'Neill J, Waters E, et al. PRISMA-Equity 2012 Extension: reporting guidelines for systematic reviews with a focus on health equity. PLOS Medicine 2012;9(10):e1001333. [DOI: 10.1371/journal.pmed.1001333] - DOI - PMC - PubMed
Welch 2016
    1. Welch V, Petticrew M, Petkovic J, Moher D, Waters E, White H, Tugwell P, PRISMA-Equity Bellagio group. Extending the PRISMA statement to equity-focused systematic reviews (PRISMA-E 2012): explanation and elaboration. Journal of Clinical Epidemiology 2016;70:68-89. [DOI: 10.1016/j.jclinepi.2015.09.001] - DOI - PubMed
Winkleby 1992
    1. Winkleby MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. American Journal of Public Health 1992;82(6):816-20. - PMC - PubMed
World Cancer Research Fund 2021
    1. World Cancer Research Fund. NOURISHING framework. http://www.wcrf.org/int/policy/policy-databases/nourishing-framework (accessed prior to 8 May 2021).
World Health Organization 2004
    1. World Health Organization. Global strategy, on diet, physical activity and health. http://www.who.int/publications/i/item/9241592222 (accessed prior to 8 May 2021).
World Health Organization 2017
    1. World Health Organization. Alcohol labelling: a discussion document on policy options; 2017. http://iris.who.int/handle/10665/350744 (accessed prior to 5 December 2024).
World Health Organization 2018
    1. World Health Organization. Global status report on alcohol and health. http://www.who.int/publications/i/item/9789241565639 (accessed prior to 8 May 2021).
World Health Organization 2020
    1. World Health Organization. Obesity. www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity (accessed prior to 8 May 2021).
Yau 2022
    1. Yau A, Berger N, Law C, Cornelsen L, Greener R, et al. Changes in household food and drink purchases following restrictions on the advertisement of high fat, salt, and sugar products across the Transport for London network: a controlled interrupted time series analysis. PLOS Medicine 2022;19(2):e1003915. [DOI: 10.1371/journal.pmed.1003915] - DOI - PMC - PubMed
Zahedi 2023
    1. Zahedi A, Oroz Artigas S, Swaboda N, Wiers CE, Görgen K, Park SQ. Neural correlates of changing food choices while bypassing values. NeuroImage 2023;274:120134. [DOI: 10.1016/j.neuroimage.2023.120134] - DOI - PubMed
Zlatevska 2018
    1. Zlatevska N, Neumann N, Dubelaar C. Mandatory calorie disclosure: a comprehensive analysis of its effect on consumers and retailers. Journal of Retailing 2018;94(1):89-101. [DOI: 10.1016/j.jretai.2017.09.007] - DOI

References to other published versions of this review

Clarke 2021b
    1. Clarke N, Marteau TM, Pilling M, Roberts NW, Jebb SA, Hollands GJ. Energy (calorie) labelling for healthier selection and consumption of food or alcohol. Cochrane Database of Systematic Reviews 2021, Issue 6. Art. No: CD014845. [DOI: 10.1002/14651858.CD014845] - DOI - PMC - PubMed

LinkOut - more resources