Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Feb;103(2):137-156.
doi: 10.1007/s00109-025-02513-4. Epub 2025 Jan 16.

Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair

Affiliations
Review

Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair

Mengbing Chen et al. J Mol Med (Berl). 2025 Feb.

Abstract

Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair. Mesenchymal stem cells (MSCs) represent a potential alternative for the treatment of periodontal bone defects due to their self-renewal and differentiation capabilities. Recent research indicates that MSCs exert their effects primarily through paracrine mechanisms. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) serve as pivotal mediators in intercellular communication, transferring microRNAs (miRNAs), messenger RNAs (mRNAs), proteins, and cytokines to recipient cells, thereby emulating the therapeutic effects of MSCs. In periodontitis, MSC-EVs play a pivotal role in immunomodulation and bone remodeling, thereby facilitating periodontal bone repair. As a cell-free therapy, MSC-EVs demonstrate considerable clinical potential due to their specialized membrane structure, minimal immunogenicity, low toxicity, high biocompatibility, and nanoscale size. This review indicates that MSC-EVs represent a promising approach for periodontitis treatment, with the potential to overcome the limitations of traditional therapies and offer a more effective solution for bone repair in periodontal disease. In this review, we introduce MSC-EVs, emphasizing their mechanisms and clinical applications in periodontal bone repair. It synthesizes recent advances, existing challenges, and future prospects to present up-to-date information and novel techniques for periodontal regeneration and to guide the improvement of MSC-EV therapy in clinical practice.

Keywords: Bone remodeling; Extracellular vesicles; Immunomodulation; Mesenchymal stem cells; Periodontitis.

PubMed Disclaimer

Conflict of interest statement

Declarations. Competing interests: The authors declare no competing interests.

Similar articles

Cited by

References

    1. Hajishengallis G, Korostoff JM (2017) Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000 75:116–151. https://doi.org/10.1111/prd.12181 - DOI - PubMed - PMC
    1. Hajishengallis G (2015) Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 15:30–44. https://doi.org/10.1038/nri3785 - DOI - PubMed - PMC
    1. Pan W, Wang Q, Chen Q (2019) The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 11:30. https://doi.org/10.1038/s41368-019-0064-z - DOI - PubMed - PMC
    1. Hajishengallis G, Chavakis T (2021) Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol 21:426–440. https://doi.org/10.1038/s41577-020-00488-6 - DOI - PubMed - PMC
    1. Slots J (2017) Periodontitis: facts, fallacies and the future. Periodontol 2000 75:7–23. https://doi.org/10.1111/prd.12221 - DOI - PubMed

MeSH terms

LinkOut - more resources