Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Dec 19:2024.12.18.629250.
doi: 10.1101/2024.12.18.629250.

Sustained efficacy of CRISPR-Cas13b gene therapy for FSHD is challenged by immune response to Cas13b

Sustained efficacy of CRISPR-Cas13b gene therapy for FSHD is challenged by immune response to Cas13b

Afrooz Rashnonejad et al. bioRxiv. .

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating muscle disease caused by de-repression of the toxic DUX4 gene in skeletal muscle. FSHD patients may benefit from DUX4 inhibition therapies, and although several experimental strategies to reduce DUX4 levels in skeletal muscle are being developed, no approved disease modifying therapies currently exist. We developed a CRISPR-Cas13b system that cleaves DUX4 mRNA and reduces DUX4 protein level, protects cells from DUX4-mediated death, and reduces FSHD-associated biomarkers in vitro . In vivo delivery of the CRISPR-Cas13b system with adeno-associated viral vectors reduced acute damage caused by high DUX4 levels in a mouse model of severe FSHD. However, protection was not sustained over time, with decreases in Cas13b and guide RNA levels between 8 weeks and 6 months after injection. In addition, wild-type mice injected with AAV6.Cas13b showed muscle inflammation with infiltrates containing Cas13b-responsive CD8+ cytotoxic T cells. Our RNA-seq data confirmed that several immune response pathways were significantly increased in human FSHD myoblasts transfected with Cas13b. Overall, our findings suggest that CRISPR-Cas13b is highly effective for DUX4 silencing but successful implementation of CRISPR/Cas13-based gene therapies may require strategies to mitigate immune responses.

PubMed Disclaimer

Publication types