Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 20;9(1):e70065.
doi: 10.1002/hem3.70065. eCollection 2025 Jan.

Detection of clinically relevant variants in the TP53 gene below 10% allelic frequency: A multicenter study by ERIC, the European Research Initiative on CLL

Sarka Pavlova  1   2 Jitka Malcikova  1   2 Lenka Radova  2 Silvia Bonfiglio  3   4 Jack B Cowland  5 Christian Brieghel  6 Mette K Andersen  5 Maria Karypidou  7 Bella Biderman  8 Michael Doubek  1   2 Gregory Lazarian  9   10 Inmaculada Rapado  11 Matthijs Vynck  12 Naomi A Porret  13 Martin Andres  13 Dina Rosenberg  14 Dvora Sahar  14 Carolina Martínez-Laperche  15 Ismael Buño  15   16   17 Andrew Hindley  18 David Donaldson  18 Julio B Sánchez  19 José A García-Marco  19 Alicia Serrano-Alcalá  20 Blanca Ferrer-Lores  20 Concepción Fernández-Rodriguez  21 Beatriz Bellosillo  21 Stephan Stilgenbauer  22 Eugen Tausch  22 Hero Nikdin  23   24 Fiona Quinn  25 Emer Atkinson  25 Lisette van de Corput  26 Cafer Yildiz  26 Cristina Bilbao-Sieyro  27 Yanira Florido  27 Christian Thiede  28 Caroline Schuster  28 Anastazja Stoj  29 Sylwia Czekalska  29 Anastasia Chatzidimitriou  7 Stamatia Laidou  7 Audrey Bidet  30 Charles Dussiau  30 Friedel Nollet  12 Giovanna Piras  31 Maria Monne  31 Svetlana Smirnova  8 Eugene Nikitin  32 Ivan Sloma  33   34 Alexis Claudel  33   34 Laetitia Largeaud  35 Loïc Ysebaert  35 Peter J M Valk  36 Amy Christian  37 Renata Walewska  37 David Oscier  37 Marta Sebastião  38 Maria Gomes da Silva  39 Piero Galieni  40 Mario Angelini  40 Davide Rossi  41 Valeria Spina  42 Sónia Matos  43 Vânia Martins  43 Tomasz Stokłosa  44 Monika Pepek  44 Panagiotis Baliakas  45 Rafa Andreu  46 Irene Luna  46 Tiina Kahre  47   48 Ülle Murumets  47 Tereza Pikousova  2 Terezia Kurucova  2 Sophie Laird  49 Daniel Ward  49 Miguel Alcoceba  50 Ana Balanzategui  50 Lydia Scarfo  3   51 Francesca Gandini  3   51 Ettore Zapparoli  4 Adoración Blanco  52   53   54 Pau Abrisqueta  52   53   54 Ana E Rodríguez-Vicente  55   56 Rocío Benito  55 Clotilde Bravetti  57 Frédéric Davi  57 Paula Gameiro  38 Joaquin Martinez-Lopez  11 Bárbara Tazón-Vega  52   53   54 Fanny Baran-Marszak  9   10 Zadie Davis  37 Mark Catherwood  18 Andrey Sudarikov  8 Richard Rosenquist  23   24 Carsten U Niemann  6 Kostas Stamatopoulos  7 Paolo Ghia  3   51 Sarka Pospisilova  1   2
Affiliations

Detection of clinically relevant variants in the TP53 gene below 10% allelic frequency: A multicenter study by ERIC, the European Research Initiative on CLL

Sarka Pavlova et al. Hemasphere. .

Abstract

In chronic lymphocytic leukemia, the reliability of next-generation sequencing (NGS) to detect TP53 variants ≤10% allelic frequency (low-VAF) is debated. We tested the ability to detect 23 such variants in 41 different laboratories using their NGS method of choice. The sensitivity was 85.6%, 94.5%, and 94.8% at 1%, 2%, and 3% VAF cut-off, respectively. While only one false positive (FP) result was reported at >2% VAF, it was more challenging to distinguish true variants <2% VAF from background noise (37 FPs reported by 9 laboratories). The impact of low-VAF variants on time-to-second-treatment (TTST) and overall survival (OS) was investigated in a series of 1092 patients. Among patients not treated with targeted agents, patients with low-VAF TP53 variants had shorter TTST and OS versus wt-TP53 patients, and the relative risk of second-line treatment or death increased continuously with increasing VAF. Targeted therapy in ≥2 line diminished the difference in OS between patients with low-VAF TP53 variants and wt-TP53 patients, while patients with high-VAF TP53 variants had inferior OS compared to wild type-TP53 cases. Altogether, NGS-based approaches are technically capable of detecting low-VAF variants. No strict threshold can be suggested from a technical standpoint, laboratories reporting TP53 mutations should participate in a standardized validation set-up. Finally, whereas low-VAF variants affected outcomes in patients receiving chemoimmunotherapy, their impact on those treated with novel therapies remains undetermined. Our results pave the way for the harmonized and accurate TP53 assessment, which is indispensable for elucidating the role of TP53 mutations in targeted treatment.

PubMed Disclaimer

Conflict of interest statement

Bárbara Tazón‐Vega: Honoraria: Bristol Meyer Squibb. Beatriz Bellosillo: Advisory board honoraria, research support, travel support, speaker fees: Astra‐Zeneca, BMS, Janssen, Merck‐Serono, Novartis, Pfizer, Hoffman‐La Roche, ThermoFisher. Christian Brieghel: Travel grant: Octapharma. Carsten U. Niemann: Research funding and/or consultancy fees: Abbvie, AstraZeneca, Beigene, Janssen, Genmab, Lilly, MSD, CSL Behring, Takeda, Octapharma. Davide Rossi: Honoraria: AbbVie, AstraZeneca, BeiGene, BMS, Janssen, Lilly. Research grants: AbbVie, AstraZeneca, Janssen. Travel grants: AstraZeneca, Janssen. Eugen Tausch: Honoraria and research support: Abbvie, AstraZeneca, BeiGene, Janssen, Hoffmann‐La Roche; Research support from Abbvie, Roche, Gilead. Frédéric Davi: Honoraria: Janssen, AstraZeneca. Kostas Stamatopoulos: Research funding, honoraria and/or consultancy fees: Abbvie, AstraZeneca, Janssen, Lilly, Roche. Lydia Scarfo: Consultancy: AbbVie, AstraZeneca, BeiGene, Janssen, Lilly; Speaker Bureau: Octapharma. Miguel Alcoceba: Honoraria and travel grants: Janssen, AstraZeneca. Martin Andres: Consultancy, Honoraria, and travel support: AstraZeneca, Novartis, Roche, Janssen‐Cilag. Maria Gomes da Silva: Consultancy and Research Funding: Janssen Cilag, AstaZeneca, Abbvie, Roche, Takeda. Pau Abrisqueta: Consultancy and Honoraria: Janssen, Abbvie, Roche, BMS, AstraZeneca, Genmab. Panagiotis Baliakas: Honoraria: Abbvie, Gilead, Janssen. Research funding: Gilead. Paolo Ghia: Honoraria: AbbVie, Astrazeneca, BeiGene, BMS, Galapagos, Janssen, Lilly/Loxo Oncology, MSD, Roche. Research funding: AbbVie, AstraZeneca, BMS, Janssen. Richard Rosenquist: Honoraria: AbbVie, AstraZeneca, Janssen, Illumina, Roche. Renata Walewska: Travel support: AbbVie, AstraZeneca, Janssen, Beigene. Sylwia Czekalska: Honoraria: AstraZeneca. Funding: Janssen, AstraZeneca. Stephan Stilgenbauer: Advisory board honoraria, research support, travel support, speaker fees: AbbVie, Acerta, Amgen, AstraZeneca, BeiGene, BMS, Celgene, Gilead, GSK, Hoffmann‐La Roche, Infinity, Janssen, Lilly, Novartis, Sunesis, Verastem. Tiina Kahre: Honoraria: AstraZeneca. Tomasz Stokłosa: Honoraria and Research Funding: Janssen, AstraZeneca. The remaining authors have no competing interests to declare.

Figures

Figure 1
Figure 1
Results of interlaboratory comparison of NGS methods. (A) Results provided by 41 laboratories testing 44 methods. Black and orange dots represent variants present in reference samples with VAF values measured by ddPCR; the color distinguishes variants reported (black) and not reported (orange) by the laboratory. Methods (X‐axis) are ordered by the lowest variant allele frequency (VAF) that was detected without missing any variant present in reference samples and without false positive results (red dots; VAF value reported by the laboratory). (B) Correlation of median VAF values reported by participants and VAF values obtained from droplet digital PCR (ddPCR) analysis for individual variants. Spearman correlation coefficient R = 0.9849. (C). Overall performance of tested methods. Blue area shows the cumulative proportion of the methods (Y‐axis) in relation to the lowest VAF (values measured by ddPCR; X‐axis) that was reliably detected, that is, all variants present in reference samples were reported without false positivity. Red line shows the cumulative proportion of methods reporting false positive results (VAF value reported by the laboratory).
Figure 2
Figure 2
Survival in patients analyzed in 12 participating centers stratified by TP53 mutation status. (A, B) Time to second treatment (TTST) in patients not receiving targeted treatment frontline stratified by variant allele frequency (VAF) (A) and by VAF and del(17p) presence (B). (C) TTST in patients treated with frontline targeted agents stratified by VAF. Event = 2nd treatment or death, censored = untreated and alive at last follow‐up. (D) Overall survival (OS) from therapy initiation. Low‐VAF = 1%–10%; high‐VAF = >10% VAF. Targeted treatment = BcR or BCL‐2 inhibitor; for details on treatment see Supporting Information S1: Table 6. Group comparison–LogRank test with Benjamini‐Hochberg correction of p‐values. HR, hazard ratio: numbers in brackets show a 95% confidence interval.
Figure 3
Figure 3
Multivariate Cox model for TTST and OS. Wild‐type TP53, mutated IGHV, and FCR‐like therapy were used as reference; 1058 patients with data available for all parameters were included. Frontline CIT–other, chemoimmunotherapy other than FCR‐like; Frontline other–other therapies. CI, confidence interval; HR, hazard ratio.
Figure 4
Figure 4
Relative risk for TTST (A) and OS (B) in relation to TP53 mutation VAF in patients not receiving targeted treatment frontline. The increasing relative risks of the event (TTST: 2nd treatment or death, OS: death) were obtained from the Cox model with penalized spline term for continuous predictor “VAF highest” centered at 0, that is, TP53 wildtype. VAF highest – % VAF of a single variant in the sample or the highest VAF if multiple variants were present.

References

    1. Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910‐1916. - PubMed
    1. Hallek M, Fischer K, Fingerle‐Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open‐label, phase 3 trial. Lancet. 2010;376(9747):1164‐1174. 10.1016/S0140-6736(10)61381-5 - DOI - PubMed
    1. Byrd JC, Hillmen P, O'Brien S, et al. Long‐term follow‐up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood. 2019;133(19):2031‐2042. 10.1182/blood-2018-08-870238 - DOI - PMC - PubMed
    1. Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018;379(26):2517‐2528. 10.1056/NEJMoa1812836 - DOI - PMC - PubMed
    1. Sharman JP, Egyed M, Jurczak W, et al. Efficacy and safety in a 4‐year follow‐up of the ELEVATE‐TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment‐naïve chronic lymphocytic leukemia. Leukemia. 2022;36(4):1171‐1175. 10.1038/s41375-021-01485-x - DOI - PMC - PubMed

LinkOut - more resources