Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 3;145(14):1553-1567.
doi: 10.1182/blood.2024027207.

CD44-mediated metabolic rewiring is a targetable dependency of IDH-mutant leukemia

Affiliations

CD44-mediated metabolic rewiring is a targetable dependency of IDH-mutant leukemia

Junhua Lyu et al. Blood. .

Abstract

Recurrent isocitrate dehydrogenase (IDH) mutations catalyze nicotinamide adenine dinucleotide phosphate (NADPH)-dependent production of oncometabolite (R)-2-hydroxyglutarate (R-2HG) for tumorigenesis. IDH inhibition provides clinical response in a subset of acute myeloid leukemia (AML) cases; however, most patients develop resistance, highlighting the need for more effective IDH-targeting therapies. By comparing transcriptomic alterations in isogenic leukemia cells harboring CRISPR base-edited IDH mutations, we identify the activation of adhesion molecules including CD44, a transmembrane glycoprotein, as a shared feature of IDH-mutant leukemia, consistent with elevated CD44 expression in IDH-mutant AML patients. CD44 is indispensable for IDH-mutant leukemia cells through activating pentose phosphate pathway and inhibiting glycolysis by phosphorylating glucose-6-phosphate dehydrogenase and pyruvate kinase muscle isozyme M2, respectively. This metabolic rewiring ensures efficient NADPH generation for mutant IDH-catalyzed R-2HG production. Combining IDH inhibition with CD44 blockade enhances the elimination of IDH-mutant leukemia cells. Hence, we describe an oncogenic feedforward pathway involving CD44-mediated metabolic rewiring for oncometabolite production, representing a potentially targetable dependency of IDH-mutant malignancies.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Similar articles

References

    1. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–773. - PMC - PubMed
    1. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–1812. - PMC - PubMed
    1. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–2221. - PMC - PubMed
    1. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–1066. - PMC - PubMed
    1. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–744. - PMC - PubMed

MeSH terms