Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025:143:323-337.
doi: 10.1016/bs.apcsb.2024.06.003. Epub 2024 Jun 21.

Nuclear Tau accumulation in Alzheimer's disease

Affiliations
Review

Nuclear Tau accumulation in Alzheimer's disease

Subashchandrabose Chinnathambi et al. Adv Protein Chem Struct Biol. 2025.

Abstract

Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity. The interaction between Tau and NUPs highlights a potential mechanism underlying NPC dysfunction in AD pathogenesis. Pathological Tau hinders the import and export of nucleus through RAN mediated cascades. Nuclear Tau aggregates colocalize with membrane less organelles called nuclear speckles, which are involved in pre-mRNA splicing, and modify their dynamics, composition, and structure. Additionally, SRRM2 and other nuclear speckle proteins including MSUT2 and PABPN1 mislocalize to cytosolic Tau aggregates, and causes propagation of Tau aggregates. Research highlights, Extracellular Tau Oligomers induce significant nuclear invagination. They act as a key player in the transformation of healthy neurons into sick neurons in AD. The mechanism behind this phenomenon depends on intracellular Tau and is linked to changes in chromatin structure, nucleocytoplasmic transport, and gene transcription. This review highlights the vital roles of nuclear Tau protein in the context of nuclear pore complex functioning and, modulation of nuclear speckles in Alzheimer's diseases. Addressing these pathways is essential for formulating focused therapeutics intended to alleviate Tau-induced neurodegeneration.

Keywords: Extracellular Tau oligomers; Nuclear Tau; Nuclear pore complex; Nuclear speckles.

PubMed Disclaimer

LinkOut - more resources