Double-sided van der Waals epitaxy of topological insulators across an atomically thin membrane
- PMID: 39843683
- DOI: 10.1038/s41563-024-02079-5
Double-sided van der Waals epitaxy of topological insulators across an atomically thin membrane
Abstract
Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes. We grow vdW topological insulators Sb2Te3 and Bi2Se3 by molecular-beam epitaxy on both surfaces of atomically thin graphene or hexagonal boron nitride, which serve as suspended two-dimensional vdW substrate layers. Both homo- and hetero-double-sided vdW topological insulator tunnel junctions are fabricated, with the atomically thin hexagonal boron nitride acting as a crystal-momentum-conserving tunnelling barrier with abrupt and epitaxial interfaces. By performing field-angle-dependent magneto-tunnelling spectroscopy on these devices, we reveal the energy-momentum-spin resonance of massless Dirac electrons tunnelling between helical Landau levels developed in the topological surface states at the interfaces.
© 2025. The Author(s), under exclusive licence to Springer Nature Limited.
Conflict of interest statement
Competing interests: The authors declare no competing interests.
Similar articles
-
van der Waals epitaxial growth of atomically thin Bi₂Se₃ and thickness-dependent topological phase transition.Nano Lett. 2015 Apr 8;15(4):2645-51. doi: 10.1021/acs.nanolett.5b00247. Epub 2015 Mar 30. Nano Lett. 2015. PMID: 25807151
-
Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures.ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8897-8907. doi: 10.1021/acsami.9b21490. Epub 2020 Feb 4. ACS Appl Mater Interfaces. 2020. PMID: 31971775
-
Topological Insulator-Based van der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions.Nano Lett. 2018 Dec 12;18(12):8047-8053. doi: 10.1021/acs.nanolett.8b04291. Epub 2018 Nov 9. Nano Lett. 2018. PMID: 30406664
-
Two-Dimensional Van Der Waals Topological Materials: Preparation, Properties, and Device Applications.Small. 2022 Nov;18(47):e2204380. doi: 10.1002/smll.202204380. Epub 2022 Sep 22. Small. 2022. PMID: 36135779 Review.
-
Wafer scale growth of single crystal two-dimensional van der Waals materials.Nanoscale. 2024 Mar 21;16(12):5941-5959. doi: 10.1039/d3nr06678a. Nanoscale. 2024. PMID: 38445855 Review.
Cited by
-
Double-sided van der Waals epitaxy across an atomic layer.Nat Mater. 2025 Mar;24(3):334-335. doi: 10.1038/s41563-025-02131-y. Nat Mater. 2025. PMID: 39900740 No abstract available.
References
-
- Bretheau, L. et al. Tunnelling spectroscopy of Andreev states in graphene. Nat. Phys. 13, 756–760 (2017). - DOI
Grants and funding
- N00014-21-1-2377/United States Department of Defense | United States Navy | Office of Naval Research (ONR)
- NRF-2021R1A5A1032996/National Research Foundation of Korea (NRF)
- RS-2023-00283291/National Research Foundation of Korea (NRF)
- RS-2023-00207732/National Research Foundation of Korea (NRF)
- NRF-2022R1A2C3007807/National Research Foundation of Korea (NRF)
LinkOut - more resources
Full Text Sources