Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2025 Mar;639(8056):968-975.
doi: 10.1038/s41586-024-08468-9. Epub 2025 Jan 22.

Genomics yields biological and phenotypic insights into bipolar disorder

Kevin S O'Connell  1   2 Maria Koromina #  3   4   5 Tracey van der Veen #  6 Toni Boltz #  7 Friederike S David #  8   9 Jessica Mei Kay Yang #  10 Keng-Han Lin #  11 Xin Wang #  11 Jonathan R I Coleman #  12   13 Brittany L Mitchell #  14   15 Caroline C McGrouther #  16 Aaditya V Rangan #  16   17 Penelope A Lind #  14   15   18 Elise Koch #  19   20 Arvid Harder #  21 Nadine Parker #  19   20 Jaroslav Bendl #  3   5   22   23 Kristina Adorjan  24   25   26 Esben Agerbo  27   28   29 Diego Albani  30 Silvia Alemany  31   32   33 Ney Alliey-Rodriguez  34   35 Thomas D Als  27   36   37 Till F M Andlauer  38 Anastasia Antoniou  39 Helga Ask  40   41 Nicholas Bass  6 Michael Bauer  42 Eva C Beins  8 Tim B Bigdeli  43   44   45   46 Carsten Bøcker Pedersen  27   28   29 Marco P Boks  47 Sigrid Børte  48   49   50 Rosa Bosch  31   51 Murielle Brum  52 Ben M Brumpton  53 Nathalie Brunkhorst-Kanaan  52 Monika Budde  24 Jonas Bybjerg-Grauholm  27   54 William Byerley  55 Judit Cabana-Domínguez  31   32   33 Murray J Cairns  56   57 Bernardo Carpiniello  58 Miquel Casas  51   59   60 Pablo Cervantes  61 Chris Chatzinakos  43   45 Hsi-Chung Chen  62   63 Tereza Clarence  3   5   22   23 Toni-Kim Clarke  64 Isabelle Claus  8 Brandon Coombes  65 Elizabeth C Corfield  40   66   67 Cristiana Cruceanu  61   68 Alfredo Cuellar-Barboza  69   70 Piotr M Czerski  71 Konstantinos Dafnas  39 Anders M Dale  72 Nina Dalkner  73 Franziska Degenhardt  8   74 J Raymond DePaulo  75 Srdjan Djurovic  76   77 Ole Kristian Drange  20   78 Valentina Escott-Price  10 Ayman H Fanous  79   80   81 Frederike T Fellendorf  73 I Nicol Ferrier  82 Liz Forty  10 Josef Frank  83 Oleksandr Frei  19   49 Nelson B Freimer  84   85 John F Fullard  3   5   22   23 Julie Garnham  86 Ian R Gizer  87 Scott D Gordon  88 Katherine Gordon-Smith  89 Tiffany A Greenwood  90 Jakob Grove  27   91   92   93 José Guzman-Parra  94 Tae Hyon Ha  95   96 Tim Hahn  97 Magnus Haraldsson  98   99 Martin Hautzinger  100 Alexandra Havdahl  40   41   66 Urs Heilbronner  24 Dennis Hellgren  21 Stefan Herms  8   101   102 Ian B Hickie  103 Per Hoffmann  8   101   102 Peter A Holmans  10 Ming-Chyi Huang  104 Masashi Ikeda  105   106 Stéphane Jamain  107 Jessica S Johnson  3   5   108 Lina Jonsson  109 Janos L Kalman  24   25 Yoichiro Kamatani  110   111 James L Kennedy  112   113   114   115 Euitae Kim  95   96   116 Jaeyoung Kim  95   117 Sarah Kittel-Schneider  118   119 James A Knowles  120 Manolis Kogevinas  121 Thorsten M Kranz  52 Kristi Krebs  122 Steven A Kushner  123 Catharina Lavebratt  124   125 Jacob Lawrence  126 Markus Leber  127 Heon-Jeong Lee  128 Calwing Liao  129   130 Susanne Lucae  131 Martin Lundberg  124   125 Donald J MacIntyre  132 Wolfgang Maier  133 Adam X Maihofer  90   134 Dolores Malaspina  3   5 Mirko Manchia  58   135 Eirini Maratou  136 Lina Martinsson  137   138 Manuel Mattheisen  27   36   37   119   139 Nathaniel W McGregor  140 Melvin G McInnis  141 James D McKay  142 Helena Medeiros  143 Andreas Meyer-Lindenberg  144   145 Vincent Millischer  124   125   146   147 Derek W Morris  148 Paraskevi Moutsatsou  136 Thomas W Mühleisen  101   149 Claire O'Donovan  86 Catherine M Olsen  150 Georgia Panagiotaropoulou  151 Sergi Papiol  24   25   31 Antonio F Pardiñas  10 Hye Youn Park  95   96 Amy Perry  89 Andrea Pfennig  42 Claudia Pisanu  152 James B Potash  75 Digby Quested  153   154 Mark H Rapaport  155 Eline J Regeer  156 John P Rice  157 Margarita Rivera  158   159   160 Eva C Schulte  8   24   133 Fanny Senner  24   25 Alexey Shadrin  19   20   161 Paul D Shilling  90 Engilbert Sigurdsson  98   99 Lisa Sindermann  8 Lea Sirignano  83 Dan Siskind  162 Claire Slaney  86 Laura G Sloofman  3   5 Olav B Smeland  19   20 Daniel J Smith  163 Janet L Sobell  164 Maria Soler Artigas  31   32   33   165 Dan J Stein  166 Frederike Stein  9 Mei-Hsin Su  167 Heejong Sung  168 Beata Świątkowska  169 Chikashi Terao  111 Markos Tesfaye  19   20   77 Martin Tesli  19   20   170 Thorgeir E Thorgeirsson  171 Jackson G Thorp  14 Claudio Toma  172   173   174 Leonardo Tondo  175 Paul A Tooney  176 Shih-Jen Tsai  177   178 Evangelia Eirini Tsermpini  86 Marquis P Vawter  179 Helmut Vedder  180 Annabel Vreeker  47   181   182 James T R Walters  10 Bendik S Winsvold  50   183   184 Stephanie H Witt  83 Hong-Hee Won  117   185 Robert Ye  129   130 Allan H Young  186   187 Peter P Zandi  75 Lea Zillich  83 23andMe Research TeamRolf Adolfsson  188 Martin Alda  86   189 Lars Alfredsson  190 Lena Backlund  124   125 Bernhard T Baune  191   192   193 Frank Bellivier  194   195 Susanne Bengesser  73 Wade H Berrettini  196 Joanna M Biernacka  65   70 Michael Boehnke  197 Anders D Børglum  27   91   92 Gerome Breen  12   13 Vaughan J Carr  173 Stanley Catts  198 Sven Cichon  8   101   102   149 Aiden Corvin  199 Nicholas Craddock  10 Udo Dannlowski  97 Dimitris Dikeos  200 Bruno Etain  194   195 Panagiotis Ferentinos  12   39 Mark Frye  70 Janice M Fullerton  172   201 Micha Gawlik  119 Elliot S Gershon  34   202 Fernando S Goes  75 Melissa J Green  172   173 Maria Grigoroiu-Serbanescu  203 Joanna Hauser  204 Frans A Henskens  205 Jens Hjerling-Leffler  206 David M Hougaard  27   54 Kristian Hveem  53   207 Nakao Iwata  106 Ian Jones  10 Lisa A Jones  89 René S Kahn  3   47 John R Kelsoe  90 Tilo Kircher  9 George Kirov  10 Po-Hsiu Kuo  62   208 Mikael Landén  21   109 Marion Leboyer  107 Qingqin S Li  209   210 Jolanta Lissowska  211 Christine Lochner  212 Carmel Loughland  213 Jurjen J Luykx  214   215 Nicholas G Martin  88   216 Carol A Mathews  217 Fermin Mayoral  94 Susan L McElroy  218 Andrew M McIntosh  132 Francis J McMahon  168 Sarah E Medland  14   216   219 Ingrid Melle  19   220 Lili Milani  122 Philip B Mitchell  173 Gunnar Morken  221   222 Ole Mors  27   223 Preben Bo Mortensen  27   224 Bertram Müller-Myhsok  131   225   226 Richard M Myers  227 Woojae Myung  95   96 Benjamin M Neale  129   130   228 Caroline M Nievergelt  90   134 Merete Nordentoft  27   229 Markus M Nöthen  8 John I Nurnberger  230 Michael C O'Donovan  10 Ketil J Oedegaard  231   232 Tomas Olsson  137   233 Michael J Owen  10 Sara A Paciga  234 Christos Pantelis  193   235   236 Carlos N Pato  237 Michele T Pato  237 George P Patrinos  238   239   240   241 Joanna M Pawlak  204 Josep Antoni Ramos-Quiroga  31   32   33   59 Andreas Reif  52 Eva Z Reininghaus  73 Marta Ribasés  31   32   33   165 Marcella Rietschel  83 Stephan Ripke  129   130   151 Guy A Rouleau  242   243 Panos Roussos  3   5   22   23   244 Takeo Saito  106 Ulrich Schall  245   246 Martin Schalling  124   125 Peter R Schofield  172   201 Thomas G Schulze  24   75   83   247   248 Laura J Scott  197 Rodney J Scott  249   250 Alessandro Serretti  251   252   253 Jordan W Smoller  130   254   255 Alessio Squassina  152 Eli A Stahl  3   5   228 Hreinn Stefansson  171 Kari Stefansson  171   256 Eystein Stordal  257   258 Fabian Streit  83   144   259 Patrick F Sullivan  21   260   261 Gustavo Turecki  262 Arne E Vaaler  263 Eduard Vieta  264 John B Vincent  112 Irwin D Waldman  265 Cynthia S Weickert  172   173   266 Thomas W Weickert  172   173   266 Thomas Werge  27   267   268   269 David C Whiteman  150 John-Anker Zwart  49   50   183 Howard J Edenberg  270   271 Andrew McQuillin  6 Andreas J Forstner  8   149   272 Niamh Mullins  3   4   5 Arianna Di Florio  10   261 Roel A Ophoff  7   84   85 Ole A Andreassen  273   274 Bipolar Disorder Working Group of the Psychiatric Genomics Consortium
Collaborators, Affiliations
Meta-Analysis

Genomics yields biological and phenotypic insights into bipolar disorder

Kevin S O'Connell et al. Nature. 2025 Mar.

Abstract

Bipolar disorder is a leading contributor to the global burden of disease1. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown2. We analysed data from participants of European, East Asian, African American and Latino ancestries (n = 158,036 cases with bipolar disorder, 2.8 million controls), combining clinical, community and self-reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-analysis, a fourfold increase over previous findings3, and identified an ancestry-specific association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-gene mapping approaches identified 36 credible genes in the aetiology of bipolar disorder. Genes prioritized through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating variations in cases with bipolar disorder4, highlighting convergence of common and rare variant signals. We report differences in the genetic architecture of bipolar disorder depending on the source of patient ascertainment and on bipolar disorder subtype (type I or type II). Several analyses implicate specific cell types in the pathophysiology of bipolar disorder, including GABAergic interneurons and medium spiny neurons. Together, these analyses provide additional insights into the genetic architecture and biological underpinnings of bipolar disorder.

PubMed Disclaimer

Conflict of interest statement

Competing interests: T.E.T., H. Stefansson and K.S. are employed by deCODE Genetics/Amgen. E.A.S. is an employee of Regeneron Genetics Center and owns stocks of Regeneron Pharmaceutical. K.-H.L. and X.W. are employed by 23andMe. Multiple additional authors work for pharmaceutical or biotechnology companies in a manner directly analogous to academic co-authors and collaborators. A.H.Y. has given paid lectures and served on advisory boards relating to drugs used in affective and related disorders for several companies (AstraZeneca, Eli Lilly, Lundbeck, Sunovion, Servier, Livanova, Janssen, Allergan, Bionomics and Sumitomo Dainippon Pharma), was Lead Investigator for the Embolden study (AstraZeneca), BCI Neuroplasticity study and Aripiprazole Mania study, and is an investigator for Janssen, Lundbeck, Livanova and Compass. J.I.N. is an investigator for Janssen. P.F.S. is on the advisory committee and a shareholder of Neumora Therapeutics. G.B. reports consultancy and speaker fees from Eli Lilly and Illumina, and grant funding from Eli Lilly. M. Landén has received speaker fees from Lundbeck. O.A.A. has served as a speaker for Janssen, Lundbeck and Sunovion, and as a consultant for Cortechs.ai. A.M.D. is a founder of and holds equity interest in CorTechs Labs and serves on its scientific advisory board; is a member of the scientific advisory board of Human Longevity and the Mohn Medical Imaging and Visualization Center; and has received research funding from General Electric Healthcare. E.V. has received grants and served as a consultant, advisor or CME speaker for the following entities: AB-Biotics, Abbott, Allergan, Angelini, AstraZeneca, Bristol Myers Squibb, Dainippon Sumitomo Pharma, Farmindustria, Ferrer, Forest Research Institute, Gedeon Richter, GlaxoSmithKline, Janssen, Lundbeck, Otsuka, Pfizer, Roche, SAGE, Sanofi-Aventis, Servier, Shire, Sunovion, Takeda, the Brain and Behaviour Foundation, the Catalan Government (AGAUR and PERIS), the Spanish Ministry of Science, Innovation, and Universities (AES and CIBERSAM), the Seventh European Framework Programme and Horizon 2020 and the Stanley Medical Research Institute. S.K.-S. received author’s, speaker’s and consultant honoraria from Janssen, Medice Arzneimittel Pütter GmbH and Takeda outside of the current work. A. Serretti is or has been a consultant and/or speaker for: Abbott, AbbVie, Angelini, AstraZeneca, Clinical Data, Boheringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi and Servier. J.R.D. has served as an unpaid consultant to Myriad-Neuroscience (formerly Assurex Health) in 2017 and 2019, and owns stock in CVS Health. B.M.N. is a member of the scientific advisory board at Deep Genomics, and consultant for Camp4 Therapeutics, Takeda Pharmaceutical and Biogen. B.-C.L., J.-W.K., Y.K.L., J.H.K., M. J. Cheon and D.J.K. are employed by Genoplan. I.B.H. is the Co-Director of Health and Policy at the Brain and Mind Centre (BMC) University of Sydney. The BMC operates an early-intervention youth services at Camperdown under contract to Headspace. I.B.H. is also the Chief Scientific Advisor to, and a 3.2% equity shareholder in, InnoWell. InnoWell was formed by the University of Sydney (45% equity) and PwC (Australia; 45% equity) to deliver the $30 M (AUD) Australian Government-funded Project Synergy (2017–2020; a 3-year program for the transformation of mental health services) and to lead transformation of mental health services internationally through the use of innovative technologies. M.J.O. and M.C.O. have received funding from Takeda Pharmaceuticals and Akrivia Health outside the scope of the current work. P. B. Mitchell. has received remuneration from Janssen (Australia) and Sanofi (Hangzhou) for lectures or advisory board membership. J.A.R.-Q. was on the speakers’ bureau and/or acted as consultant for Biogen, Idorsia, Casen-Recordati, Janssen-Cilag, Novartis, Takeda, Bial, Sincrolab, Neuraxpharm, Novartis, BMS, Medice, Rubió, Uriach, Technofarma and Raffo in the past 3 years; has also received travel awards (airplane tickets and hotel) for taking part in psychiatric meetings from Idorsia, Janssen-Cilag, Rubió, Takeda, Bial and Medice; and the Department of Psychiatry chaired by J.A.R.-Q. received unrestricted educational and research support from the following companies in the past 3 years: Exeltis, Idorsia, Janssen-Cilag, Neuraxpharm, Oryzon, Roche, Probitas and Rubió. All other authors declare no competing interests.

Figures

Extended Figure 1.
Extended Figure 1.. Network diagram of the genetic correlations between BD ascertained from Clinical, Community and Self-report samples, as well as BD-subtypes (BDI and BDII).
The line widths are proportional to the strength of the correlations between pairs. BDI: bipolar disorder I, BDII: bipolar disorder II
Extended Figure 2:
Extended Figure 2:. Univariate MiXeR estimates of the required effective sample size needed to capture 50% of the genetic variance (horizontal dashed line) associated with each BD ascertainment and subtype.
N and Sample size refer to the effective sample size. The estimated effective sample size (and standard errors) are given in the legend alongside each trait name.
Extended Figure 3.
Extended Figure 3.. Trivariate MiXeR estimates for the genetic overlap of BD from Clinical, Community and Self-report samples.
The percentages show the proportion of trait-influencing variants within each section of the Venn diagram relative to the sum of all trait-influencing variants across all samples. The size of the circles reflects the polygenicity of each trait.
Extended Figure 4.
Extended Figure 4.. Miami plot for BD genome-wide meta-analyses, including all cohorts.
Upper panel: the multi-ancestry meta-analysis identified 298 genome-wide significant (GWS) loci. Lower panel: porcupine plot showing the results of the Latino (0 GWS loci), African American (0 GWS loci), East Asian (1 GWS locus) and European (229 GWS loci) meta-analyses. The x-axes show genomic position (chromosomes 1–22), and the y axes show statistical significance as –log10[p-value]. P-values are two-sided and based on an inverse-variance-weighted fixed-effects meta-analysis. The dashed black lines show the GWS threshold (P < 5 × 10−8). The star indicates the position of the East Asian GWS locus (rs117130410, 4:105734758, build GRCh37).
Extended Figure 5.
Extended Figure 5.. Cluster-level SNP-heritability enrichment for bipolar disorder.
The t-distributed stochastic neighbor embedding (tSNE) plot (left) (from Siletti et al.) is coloured by the enrichment z-score. Grey indicates non-significantly enriched superclusters (FDR > 0.05). The barplot (right) shows the top 35 significantly enriched clusters. The numbers in parentheses on the y-axis indicate the cell type clusters as defined in Siletti et al.
Extended Figure 6.
Extended Figure 6.. Number of SNPs within the smallest 95% credible sets (CS) from meta-analysis of European and multi-ancestry meta-analyses when excluding and including self-report data.
Colours represent CS of varying size, with blue CS containing 0 SNPs and red CS containing 15+ SNPs. All fine-mapped SNPs regardless of their PIP were used to assess the size of the 95% credible sets.
Extended Figure 7.
Extended Figure 7.. Methods and criteria for credible gene identification.
Extended Figure 8.
Extended Figure 8.. Clustering of patterns of temporal variation in expression of 34 credible genes.
Cluster 1 (n=21 genes) shows reduced prenatal gene expression, with gene expression peaking at birth and remaining stable over the life-course. Cluster 2 (n=13 genes) includes genes with a peak gene expression during fetal development with a drop-off in expression before birth. Genes within each cluster are described in Supplementary Table 31. To illustrate the variability in gene expression within each cluster we plot each donor expression value in each sampled brain region for the 34 credible genes as individual points. Smoothing splines used to illustrate the age trajectory for each cluster is based on generalized additive models with the predicted 95% confidence interval in grey. We use age in days to plot the variation in gene expression with the x-axis on a log2 scale and labels for birth, 10, 18, and 65 years of age as reference points.
Figure 1.
Figure 1.
Genetic correlation and bivariate MiXeR estimates for the genetic overlap of BD ascertainment and subtypes. Trait-influencing genetic variants shared between each pair (grey) and unique to each trait (colours) are shown. The numbers within the Venn diagrams indicate the estimated number of trait-influencing variants (and standard errors) (in thousands) that explain 90% of SNP heritability in each phenotype. The size of the circles reflects the polygenicity of each trait, with larger circles corresponding to greater polygenicity. The estimated genetic correlation (rg) and standard error between BD and each trait of interest from LDSC is shown below the corresponding Venn diagram. Clinical and Community samples were stratified into bipolar I disorder (BDI) and bipolar II disorder (BDII) subtypes if subtype data were available. Model fit statistics indicated that MiXeR-modelled overlap for bivariate comparisons including the bipolar subtypes (BDI and BDII) were not distinguishable from minimal or maximal possible overlap, and therefore to be interpreted with caution (see Supplementary Table 4).
Figure 2.
Figure 2.
Genetic correlations (with standard errors) between bipolar disorder and other psychiatric disorders. The y-axis (Trait2) is ordered based on the significance and magnitude of genetic correlation of each trait with bipolar disorder type I. P-values were calculated from the two-sided z statistics computed by dividing the estimated genetic correlation by the estimated standard error, without adjustment. The standard error for a genetic correlation was estimated using a ratio block jackknife over 200 blocks. Triangles indicate significant results passing the Bonferroni corrected significance threshold of two-sided P < 3.6 × 10−5. Each error bar represents the standard error of the estimate. ADHD, attention deficit/hyperactivity disorder. PTSD, post-traumatic stress disorder. The year indicated in parentheses after each trait refers to the year in which the GWAS was published. Details are provided in Supplementary Table 13.
Figure 3.
Figure 3.
Phenotypic variance in bipolar disorder in European cohorts explained by polygenic risk scores derived from the multi-ancestry and European meta-analyses (with and without self-reported data). Variance explained is presented on the liability scale, assuming a 2% population prevalence of bipolar disorder. The results in the first panel (A) are the median weighted liability R2 values across all 55 European cohorts (40,992 cases, 80,215 controls, Neff = 46,725). Similarly, the remaining panels show the results across (B) 36 bipolar disorder I (BDI) cohorts (12,419 cases and 33,148 controls, Neff = 14,607), (C) 21 bipolar disorder II (BDII cohorts, 2,549 cases, 23,385 controls, Neff = 4,021), (D) 48 Clinical cohorts (27,833 cases, 46,623 controls, Neff = 29,543), and (E) 7 Community cohorts (13,159 cases, 36,592 controls, Neff = 17,178). All analyses were weighted by the effective n per cohort. The median liability R2 is represented as a horizontal black line.
Figure 4.
Figure 4.
Supercluster-level SNP-heritability enrichment for bipolar disorder. The t-distributed stochastic neighbour embedding (tSNE) plot (from Siletti et al.) (left) is coloured by the enrichment z-score. Grey indicates non-significantly enriched superclusters (FDR > 0.05). The barplot (right) shows the nine significantly enriched superclusters.

References

    1. Carvalho AF, Firth J & Vieta E Bipolar Disorder. N. Engl. J. Med. 383, 58–66 (2020). - PubMed
    1. Lichtenstein P et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239 (2009). - PMC - PubMed
    1. Mullins N et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021). - PMC - PubMed
    1. Palmer DS et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat. Genet. 54, 541–547 (2022). - PMC - PubMed
    1. McIntyre RS et al. Bipolar disorders. Lancet 396, 1841–1856 (2020). - PubMed

Methods References

    1. Lam M et al. RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics 36, 930–933 (2020). - PMC - PubMed
    1. Price AL et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics vol. 38 904–909 Preprint at 10.1038/ng1847 (2006). - DOI - PubMed
    1. Loh P-R et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016). - PMC - PubMed
    1. Das S et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016). - PMC - PubMed
    1. McCarthy S et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016). - PMC - PubMed

Publication types