Identify biological Alzheimer's disease using a novel nucleic acid-linked protein immunoassay
- PMID: 39845736
- PMCID: PMC11753389
- DOI: 10.1093/braincomms/fcaf004
Identify biological Alzheimer's disease using a novel nucleic acid-linked protein immunoassay
Abstract
Blood-based biomarkers have been revolutionizing the detection, diagnosis and screening of Alzheimer's disease. Specifically, phosphorylated-tau variants (p-tau181, p-tau217 and p-tau231) are promising biomarkers for identifying Alzheimer's disease pathology. Antibody-based assays such as single molecule arrays immunoassays are powerful tools to investigate pathological changes indicated by blood-based biomarkers and have been studied extensively in the Alzheimer's disease research field. A novel proteomic technology-NUcleic acid Linked Immuno-Sandwich Assay (NULISA)-was developed to improve the sensitivity of traditional proximity ligation assays and offer a comprehensive outlook for 120 protein biomarkers in neurodegenerative diseases. Due to the relative novelty of the NULISA technology in quantifying Alzheimer's disease biomarkers, validation through comparisons with more established methods is required. The main objective of the current study was to determine the capability of p-tau variants quantified using NULISA for identifying abnormal amyloid-β and tau pathology. We assessed 397 participants [mean (standard deviation) age, 64.8 (15.7) years; 244 females (61.5%) and 153 males (38.5%)] from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort where participants had plasma measurements of p-tau181, p-tau217 and p-tau231 from NULISA and single molecule arrays immunoassays. Participants also underwent neuroimaging assessments, including structural MRI, amyloid-PET and tau-PET. Our findings suggest an excellent agreement between plasma p-tau variants quantified using NULISA and single molecule arrays immunoassays. Plasma p-tau217 measured with NULISA shows excellent discriminative accuracy for abnormal amyloid-PET (area under the receiver operating characteristic curve = 0.918, 95% confidence interval = 0.883 to 0.953, P < 0.0001) and tau-PET (area under the receiver operating characteristic curve = 0.939; 95% confidence interval = 0.909 to 0.969, P < 0.0001). It also presents the capability for differentiating tau-PET staging. Validation of the NULISA-measured plasma biomarkers adds to the current analytical methods for Alzheimer's disease diagnosis, screening and staging and could potentially expedite the development of a blood-based biomarker panel.
Keywords: Alzheimer’s disease; PET; blood-based biomarker; head-to-head comparison.
© The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain.
Conflict of interest statement
Outside the work presented in this paper, P.R.-N. provides consultancy services for Roche, Cerveau Radiopharmaceuticals, Lilly, Eisai, Pfizer and Novo Nordisk. He also serves as a clinical trial investigator for Biogen, Novo Nordisk and Biogen. S.G. is a member of the scientific advisory boards of Alzheon, AmyriAD, Eisai Canada, Enigma USA, Lilly Canada, Medesis, Okutsa Canada, Roche Canada and TauRx. He is a member of the editorial board of JPAD and of the Neurotorium. He has given lectures under the auspices of Biogen Canada and Lundbeck Korea. H.Z. has served at scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector, Alzinova, ALZPath, Amylyx, Annexon, Apellis, Artery Therapeutics, AZTherapies, Cognito Therapeutics, CogRx, Denali, Eisai, Merry Life, Nervgen, Novo Nordisk, Optoceutics, Passage Bio, Pinteon Therapeutics, Prothena, Red Abbey Labs, reMYND, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics and Wave; has given lectures in symposia sponsored by Alzecure, Biogen, Cellectricon, Fujirebio, Lilly, Novo Nordisk and Roche; and is a co-founder of Brain Biomarker Solutions (BBS) in Gothenburg AB, which is a part of the GU Ventures Incubator Program (outside submitted work). K.B. has served as a consultant and on advisory boards for Acumen, ALZPath, BioArctic, Biogen, Eisai, Julius Clinical, Lilly, Novartis, Ono Pharma, Prothena, Roche Diagnostics and Siemens Healthineers; has served at data monitoring committees for Julius Clinical and Novartis; has given lectures, produced educational materials and participated in educational programmes for Biogen, Eisai and Roche Diagnostics; and is a co-founder of BBS in Gothenburg AB, which is a part of the GU Ventures Incubator Program. The remaining authors have no conflicts of interest to report related to this work.
Figures





References
-
- Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056. - PubMed
-
- Wang YTT, Rosa-Neto P, Gauthier S. Advanced brain imaging for the diagnosis of Alzheimer disease. Curr Opin Neurol. 2023;36(5):481–490. - PubMed
-
- Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: A follow-up study. Lancet Neurol. 2006;5(3):228–234. - PubMed
-
- Dubois B, Feldman HH, Jacova C, et al. . Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014;13(6):614–629. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources