Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Feb 4;64(3):719-734.
doi: 10.1021/acs.biochem.4c00749. Epub 2025 Jan 23.

Chemical Logic of Peptide Branching by Iterative Nonlinear Nonribosomal Peptide Synthetases

Affiliations
Review

Chemical Logic of Peptide Branching by Iterative Nonlinear Nonribosomal Peptide Synthetases

Jinping Yang et al. Biochemistry. .

Abstract

Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain Acinetobacter baumannii. We untangled the unusual branching mechanism of fimsbactin A biosynthesis through a combination of bioinformatics, site-directed mutagenesis, in vitro reconstitution, molecular modeling, and molecular dynamics simulation. Our findings clarify the roles of the fimsbactin NRPS enzymes, uncovering catalytically redundant domains and identifying the multifunctional nature of the FbsF cyclization (Cy) domain. We demonstrate the dynamic interplay between l-serine and 2,3-dihydroxybenzoic acid derived dipeptides, partitioning between amide and ester forms via a 1,2-N-to-O-acyl shift orchestrated by the noncanonical, multichannel FbsF Cy domain. The branching event occurs in a secondary condensation event facilitated by this Cy domain with two dipeptidyl intermediates, which generates a branched tetrapeptide thioester. Finally, the terminal condensation domain of FbsG recruits a soluble nucleophile to release the final product. This study advances our understanding of the intricate biosynthetic pathways and chemical logic employed by NRPSs, shedding light on the mechanisms underlying the synthesis of complex branched peptides.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Similar articles

Cited by

References

Publication types

MeSH terms

LinkOut - more resources