Optimizing Muscle Performance in Young Soccer Players: Exploring the Impact of Resisted Sprint Training and Its Relationship with Distance Covered
- PMID: 39852622
- PMCID: PMC11769130
- DOI: 10.3390/sports13010026
Optimizing Muscle Performance in Young Soccer Players: Exploring the Impact of Resisted Sprint Training and Its Relationship with Distance Covered
Abstract
Background: Speed training with resisted sprints has been shown to positively affect neuromuscular performance in soccer players. Various loads, ranging from 10% to 120% of body mass, have demonstrated performance improvements across the spectrum. However, the impact of sprint distance with optimal load on these adaptive responses has yet to be thoroughly described.
Objective: To analyze the influence of sprint distance in resisted sprints on muscle performance in young soccer players.
Methods: This quantitative study utilized a pre-post experimental design. The sample consisted of 24 young soccer players (15.3 ± 0.68 years; 61.4 ± 7.08 kg; 1.60 ± 0.06 m) randomized into three groups (10, 20, and 30 m) and subjected to 12 sessions of resisted sprint training over six weeks. The volume was homogenized across groups, with a total distance of 120 m for each. The intervention's effect was analyzed through performance in the isometric mid-thigh pull (IMTP), countermovement jump (CMJ), modified 505 agility test (505 m), and linear sprint tests. Differences were analyzed using a mixed ANOVA, incorporating a between-subjects factor (training group) and a within-subjects factor (pre- and post-intervention).
Results: Time-dependent differences were observed in all groups for peak force (PF) (p < 0.001; η2p = 0.62), time to PF (TPF) (p < 0.001; η2p = 0.53), impulse at 50 (p < 0.001; η2p = 0.57), 100 (p < 0.001; η2p = 0.60), and 200 ms (p < 0.001; η2p = 0.67) in IMTP; jump height by impulse-momentum (p < 0.001; η2p = 0.64), rate of force development (p = 0.04; η2p = 0.14), yielding impulse (p < 0.001; η2p = 0.49), and concentric impulse (p = 0.01; η2p = 0.19) in CMJ; time (p < 0.001; η2p = 0.46) in 505 m; and average speed in linear sprint (p = 0.003; η2p = 0.36), with moderate to large effect sizes, regardless of the distance covered. No differences were observed for the interaction between the time* and group or between groups.
Conclusion: Performance improvements were independent of the sprint distance, with no differences between training groups. Distances between 10 and 30 m may enhance muscle performance in young soccer players.
Keywords: football; muscle strength; physical fitness; puberty players; resistance training.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures


References
-
- Dolci F., Hart N.H., Kilding A.E., Chivers P., Piggott B., Spiteri T. Physical and Energetic Demand of Soccer: A Brief Review. Strength Cond. J. 2020;42:70–77. doi: 10.1519/SSC.0000000000000533. - DOI
LinkOut - more resources
Full Text Sources