Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 1;328(4):C1150-C1159.
doi: 10.1152/ajpcell.00538.2024. Epub 2025 Jan 24.

Dysfunctional mitochondrial bioenergetics sustains drug resistance in cancer cells

Affiliations
Free article

Dysfunctional mitochondrial bioenergetics sustains drug resistance in cancer cells

Davide Gnocchi et al. Am J Physiol Cell Physiol. .
Free article

Abstract

Resistance to drugs is one of the major issues affecting the response to pharmacological treatments for tumors. Different mechanisms have been proposed to explain the development of cancer drug resistance (CDR), and several approaches to overcome it have been suggested. However, the biological basis of CDR remains unclear. Here, we investigated whether mitochondrial damage and consequent mitochondrial dysfunction are major causes of drug resistance in different tumors. To this end, we used cell lines from three tumors: hepatocellular carcinoma, breast cancer, and colon cancer. We then applied a protocol that recapitulates chemotherapy regimens in patients, rendering each cell line resistant to the drug commonly used in their respective treatments. The combination of cellular respiration analysis, gene expression analysis of cytochrome c oxidase isoforms, and mass spectrometry assessment of cardiolipin (CL) reveals that mitochondrial dysfunction is the underlying cause of the resistant phenotype. Importantly, we disclosed for the first time the rapid inhibition of oxidative phosphorylation (OXPHOS) by l-lactate, the major product of fermentation. Finally, we demonstrated that inhibition of lactic acid fermentation and activation of OXPHOS can increase drug sensitivity in all tested drug-resistant cancer cells. Taken together, our results suggest that inhibiting fermentation and enhancing mitochondrial function in cancer cells may be a concrete option to control the worrisome phenomenon of CDR.NEW & NOTEWORTHY Cancer drug resistance (CDR) is increasingly becoming a concerning clinical problem. The mechanisms behind the onset of CDR are still not well defined. In this study, we demonstrated that a treatment mimicking long-term clinical protocols with commonly used chemotherapeutic agents promotes mitochondrial bioenergetic dysfunction, leading to the acquisition of CDR. In a future perspective, interventions aimed at inhibiting fermentation and restoring OXPHOS efficiency may offer tangible opportunities to reduce the clinical burden of CDR.

Keywords: cancer drug resistance; cardiolipin; l-lactate; mitochondria; oxidative phosphorylation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources