Hyaluronic acid-silybin conjugate for the preparation of multifunctional, biomimetic, vancomycin-loaded self-assembled polymersomes against bacterial sepsis
- PMID: 39855529
- DOI: 10.1016/j.ijbiomac.2025.140152
Hyaluronic acid-silybin conjugate for the preparation of multifunctional, biomimetic, vancomycin-loaded self-assembled polymersomes against bacterial sepsis
Abstract
Sepsis, a life-threatening disruption, remains a significant global healthcare challenge that urgently needs novel strategies to improve management. This study aimed to develop multifunctional vancomycin-loaded polymersomes (VCM-HA-SIL-Ps) using a novel hyaluronic acid-silybin (HA-SIL) conjugate to target the TLR inflammatory pathway and enhance VCM's efficacy against bacterial sepsis. HA-SIL was synthesized and characterized by FT-IR, UV-Vis spectroscopy, and 1H NMR. The biomimetic properties of HA-SIL were confirmed via in silico (-73.35 kcal/mol) and in vitro (dissociation constant = 2.872 μM) binding affinity studies against TLR2. VCM-HA-SIL-Ps exhibited appropriate physicochemical properties, biocompatibility, and stability. VCM-HA-SIL-Ps sustained VCM release for 48 h, achieving 73.38 % cumulative release. In vitro antibacterial studies showed that VCM-HA-SIL-Ps had superior minimum inhibitory concentration against sensitive and resistant Staphylococcus aureus and faster bacterial killing, compared to free VCM. Additionally, VCM-HA-SIL-Ps demonstrated excellent DPPH radicals scavenging and effective anti-inflammatory activity on bacterial toxin-stimulated cells. Finally, in a mouse model of MRSA-induced sepsis, VCM-HA-SIL-Ps achieved 100 % bacterial eradication, significantly reduced pro-inflammatory markers (IL-6, TNF-α, IL-1β by 2.9-, 1.8-, and 5-fold, respectively), and minimized organ damage. Collectively, these findings demonstrate the potential of HA-SIL as a novel multifunctional adjuvant for effective antibiotic delivery against bacterial sepsis.
Keywords: Bacterial Infection; Biomimetic; Hyaluronic Acid; Sepsis; Silybin; Vancomycin.
Copyright © 2025 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
