Research Progress and Clinical Translation Potential of Coronary Atherosclerosis Diagnostic Markers from a Genomic Perspective
- PMID: 39858645
- PMCID: PMC11764800
- DOI: 10.3390/genes16010098
Research Progress and Clinical Translation Potential of Coronary Atherosclerosis Diagnostic Markers from a Genomic Perspective
Abstract
Objective: Coronary atherosclerosis (CAD) is characterized by arterial intima lipid deposition, chronic inflammation, and fibrous tissue proliferation, leading to arterial wall thickening and lumen narrowing. As the primary cause of coronary heart disease and acute coronary syndrome, CAD significantly impacts global health. Recent genetic studies have demonstrated CAD's polygenic and multifactorial nature, providing molecular insights for early diagnosis and risk assessment. This review analyzes recent advances in CAD-related genetic markers and evaluates their diagnostic potential, focusing on their applications in diagnosis and risk stratification within precision medicine. Methods: We conducted a systematic review of CAD genomic studies from PubMed and Web of Science databases, analyzing findings from genome-wide association studies (GWASs), gene sequencing, transcriptomics, and epigenomics research. Results: GWASs and sequencing studies have identified key genetic variations associated with CAD, including JCAD/KIAA1462, GUCY1A3, PCSK9, and SORT1, which regulate inflammation, lipid metabolism, and vascular function. Transcriptomic and epigenomic analyses have revealed disease-specific gene expression patterns, DNA methylation signatures, and regulatory non-coding RNAs (miRNAs and lncRNAs), providing new approaches for early detection. Conclusions: While genetic marker research in CAD has advanced significantly, clinical implementation faces challenges including marker dynamics, a lack of standardization, and integration with conventional diagnostics. Future research should prioritize developing standardized guidelines, conducting large-scale prospective studies, and enhancing multi-omics data integration to advance genomic diagnostics in CAD, ultimately improving patient outcomes through precision medicine.
Keywords: coronary atherosclerosis; early diagnosis; epigenomics; gene markers; genome-wide association study; genomics; precision medicine; transcriptomics.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
References
-
- Roth G.A., Mensah G.A., Johnson C.O., Addolorato G., Ammirati E., Baddour L.M., Barengo N.C., Beaton A.Z., Benjamin E.J., Benziger C.P., et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2021;77:1958–1959. doi: 10.1016/j.jacc.2021.02.039. - DOI - PMC - PubMed
-
- Tcheandjieu C., Zhu X., Hilliard A.T., Clarke S.L., Napolioni V., Ma S., Lee K.M., Fang H., Chen F., Lu Y., et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat. Med. 2022;28:1679–1692. doi: 10.1038/s41591-022-01891-3. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
