Energy Metabolism and Stemness and the Role of Lauric Acid in Reversing 5-Fluorouracil Resistance in Colorectal Cancer Cells
- PMID: 39859378
- PMCID: PMC11766121
- DOI: 10.3390/ijms26020664
Energy Metabolism and Stemness and the Role of Lauric Acid in Reversing 5-Fluorouracil Resistance in Colorectal Cancer Cells
Abstract
While 5-fluorouracil (5FU) plays a central role in chemotherapy for colorectal cancer (CRC), resistance to 5FU remains a major challenge in CRC treatment, and its underlying mechanisms remain unclear. In this study, we investigated the relationship between 5FU resistance acquisition, stemness, and energy metabolism. Among the two CRC cell lines, HT29 cells exhibited glycolytic and quiescent properties, while CT26 cells relied on oxidative phosphorylation (OXPHOS) for energy. In contrast, the 5FU-resistant sublines (HT29R and CT26R), developed through continuous exposure to low concentrations of 5FU, demonstrated enhanced stemness. This was associated with glycolytic dominance, low proliferation, and reduced reactive oxygen species (ROS) production. However, treatment with the medium-chain fatty acid lauric acid shifted the cells to OXPHOS, reducing stemness, increasing ROS levels, and inducing cell death, therefore reversing 5FU resistance. These findings suggest that an enhancement in stemness and the reprogramming of energy metabolism play key roles in acquiring 5FU resistance in CRC. While lauric acid reversed 5FU resistance, further clinical studies are required.
Keywords: 5-fluorouracil; cancer stemness; colorectal cancer; drug resistance; energy metabolism; oxidative stress.
Conflict of interest statement
The authors have no conflicts of interest to declare.
Figures






References
-
- Orillard E., Adhikari A., Malouf R.S., Calais F., Marchal C., Westeel V. Immune checkpoint inhibitors plus platinum-based chemotherapy compared to platinum-based chemotherapy with or without bevacizumab for first-line treatment of older people with advanced non-small cell lung cancer. Cochrane Database Syst. Rev. 2024;8:CD015495. doi: 10.1002/14651858.cd015495. - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
- 19K16564/Ministry of Education, Culture, Sports, Science and Technology
- 23K19900/Ministry of Education, Culture, Sports, Science and Technology
- 23K10481/Ministry of Education, Culture, Sports, Science and Technology
- 21K11223/Ministry of Education, Culture, Sports, Science and Technology
- 22K16497/Ministry of Education, Culture, Sports, Science and Technology
LinkOut - more resources
Full Text Sources
Medical