Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr:302:140306.
doi: 10.1016/j.ijbiomac.2025.140306. Epub 2025 Jan 27.

Intratumoral delivery of Mitomycin C using bio-responsive Gellan Gum Nanogel: In-vitro evaluation and enhanced chemotherapeutic efficacy

Affiliations

Intratumoral delivery of Mitomycin C using bio-responsive Gellan Gum Nanogel: In-vitro evaluation and enhanced chemotherapeutic efficacy

Nikhil Rai et al. Int J Biol Macromol. 2025 Apr.

Retraction in

Abstract

Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release. Synthesis was performed using a microwave-assisted free radical polymerization technique, which facilitated efficient and rapid cross-linking. A Quality by Design strategy was implemented to optimize key parameters, ensuring the nanogel's suitability for intratumoral delivery, including ideal injectability, viscosity, and drug release characteristics. Mitomycin C (MMC), a chemotherapeutic agent effective against hypoxic tumor cells, was efficiently loaded within the cross-linked nanogel. Optimal stability and drug loading were achieved at a 2:1 nanogel/MMC ratio. The nanogel's structure and composition were confirmed using elemental analysis, FTIR, NMR spectroscopy, and XRD. Stability studies demonstrated its robustness in simulated physiological conditions. In vitro evaluations revealed enhanced cellular uptake of the MMC-loaded nanogel, leading to effective cell cycle arrest, mitochondrial membrane potential disruption, and apoptosis, Co-localization studies with Lysotracker Green, a lysosomal marker, revealed that the nanogels were trafficked to lysosomes. Pharmacokinetic analysis showed significantly reduced systemic exposure (lower plasma Cmax) compared to intravenous administration, while biodistribution studies using IVIS imaging demonstrated prolonged retention of the nanogel within tumor tissues. In vivo studies using a 4T1 xenograft mouse model highlighted the superior antitumor efficacy of the intratumoral nanogel system compared to free MMC. The nanogel treatment resulted in significant tumor volume reduction, minimal changes in body weight, and reduced lung metastasis, as confirmed by histological analysis (HE staining). Ki67 and TUNEL assays of tumor tissues further substantiated the nanogel's ability to suppress proliferation and induce apoptosis. These outcomes directly correlate with our goal of using a redox responsive nanogel system to improve localized drug delivery and minimize systemic side effects. This biodegradable, redox-responsive polymer system represents a significant advance in nanomedicine, offering a promising platform for safe and effective localized cancer therapy.

Keywords: Anticancer therapy; Gellan gum polysaccharide; Redox-responsive intratumoral nanogel.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources