Qcforever2: Advanced Automation of Quantum Chemistry Computations
- PMID: 39865308
- DOI: 10.1002/jcc.70017
Qcforever2: Advanced Automation of Quantum Chemistry Computations
Abstract
QCforever is a wrapper designed to automatically and simultaneously calculate various physical quantities using quantum chemical (QC) calculation software for blackbox optimization in chemical space. We have updated it to QCforever2 to search the conformation and optimize density functional parameters for a more accurate and reliable evaluation of an input molecule. In blackbox optimization, QCforever2 can work as compactly arranged surrogate models for costly chemical experiments. QCforever2 is the future of QC calculations and would be a good companion for chemical laboratories, providing more reliable search and exploitation in the chemical space.
Keywords: Bayesian optimization; conformation search; range separated parameter; spin multiplicity.
© 2025 Wiley Periodicals LLC.
Similar articles
-
QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization.J Chem Inf Model. 2022 Sep 26;62(18):4427-4434. doi: 10.1021/acs.jcim.2c00812. Epub 2022 Sep 8. J Chem Inf Model. 2022. PMID: 36074116 Free PMC article.
-
Micropollutant Oxidation Studied by Quantum Chemical Computations: Methodology and Applications to Thermodynamics, Kinetics, and Reaction Mechanisms.Acc Chem Res. 2019 Mar 19;52(3):605-614. doi: 10.1021/acs.accounts.8b00610. Epub 2019 Mar 4. Acc Chem Res. 2019. PMID: 30829468
-
RAQET: Large-scale two-component relativistic quantum chemistry program package.J Comput Chem. 2018 Oct 15;39(27):2333-2344. doi: 10.1002/jcc.25364. Epub 2018 Sep 20. J Comput Chem. 2018. PMID: 30238477 Free PMC article.
-
Advances in Docking.Curr Med Chem. 2019;26(42):7555-7580. doi: 10.2174/0929867325666180904115000. Curr Med Chem. 2019. PMID: 30182836 Review.
-
Quantum chemical calculations of 77 Se and 125 Te nuclear magnetic resonance spectral parameters and their structural applications.Magn Reson Chem. 2021 Apr;59(4):359-407. doi: 10.1002/mrc.5111. Epub 2020 Nov 11. Magn Reson Chem. 2021. PMID: 33095923 Review.
References
-
- K. Terayama, M. Sumita, R. Tamura, and K. Tsuda, “Black‐Box Optimization for Automated Discovery,” Accounts of Chemical Research 54 (2021): 1334.
-
- R. Pollice, G. G. Dos Passos, M. Aldeghi, et al., “Data‐Driven Strategies for Accelerated Materials Design,” Accounts of Chemical Research 54, no. 4 (2021): 849–860.
-
- F. Ren, L. Ward, T. Williams, et al., “Accelerated Discovery of Metallic Glasses Through Iteration of Machine Learning and High‐Throughput Experiments,” Science Advances 4, no. 4 (2018): eaaq1566.
-
- K. Homma, Y. Liu, M. Sumita, et al., “Optimization of a Heterogeneous Ternary Li3PO4–Li3BO3–Li2SO4 Mixture for Li‐Ion Conductivity by Machine Learning,” Journal of Physical Chemistry C 124 (2020): 12865–12870.
-
- M. Sumita, R. Tamura, K. Homma, and K. Tsuda, “Li‐Ion Conductive Li3PO4–Li3BO3–Li2SO4Mixture:Prevision Through Density Functional Molecular Dynamics and Machine Learning,” Bulletin of the Chemical Society of Japan 92 (2019): 1100–1106.
Grants and funding
LinkOut - more resources
Full Text Sources