Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 24;15(1):e70857.
doi: 10.1002/ece3.70857. eCollection 2025 Jan.

Revealing Elasmobranch Distributions in Turbid Coastal Waters: Insights From Environmental DNA and Particle Tracking

Affiliations

Revealing Elasmobranch Distributions in Turbid Coastal Waters: Insights From Environmental DNA and Particle Tracking

Nick Dunn et al. Ecol Evol. .

Abstract

Many sharks, rays and skates are highly threatened and vulnerable to overexploitation, as such reliable monitoring of elasmobranchs is key to effective management and conservation. The mobile and elusive nature of these species makes monitoring challenging, particularly in temperate waters with low visibility. Environmental DNA (eDNA) methods present an opportunity to study these species in the absence of visual identification or invasive techniques. However, eDNA data alone can be difficult to interpret for species monitoring, particularly in a marine setting where its distribution can be influenced by water currents. In this study, we investigated the spatial and temporal distribution of elasmobranch species in two Special Areas for Conservation (SAC) off the coast of Wales. We took monthly eDNA samples for 1 year (starting September 2020 and March 2022 for the northern and southern SACs, respectively), and used metabarcoding to reveal the presence of elasmobranch species. We combined these data with hydrodynamic modelling and particle tracking methods to simulate the potential origins of the detected eDNA. We detected 11 elasmobranch species, including the critically endangered angelshark (Squatina squatina) and tope (Galeorhinus galeus). Most detections were in the spring and the fewest in the autumn. The particle tracking simulations predicted that eDNA was shed, on average, approximately 7 km and 15 km (in the northern and southern SACs, respectively) from the sampling stations at which it was detected. These results show that the two SACs represent important areas for elasmobranchs in the United Kingdom and demonstrate that eDNA methods combined with particle tracking simulations can represent a new frontier for monitoring marine species.

Mae llawer o siarcod a morgathod dan fygythiad difrifol ac yn agored i or‐ecsbloetio, felly mae gwaith dibynadwy i fonitro elasmobranciaid yn allweddol i reolaeth a chadwraeth effeithiol. Mae natur symudol a dirgel y rhywogaethau hyn yn ei gwneud hi'n anodd eu monitro, yn enwedig mewn dyfroedd tymherus â gwelededd isel. Mae dulliau DNA amgylcheddol (eDNA) yn rhoi cyfle i astudio'r rhywogaethau hyn yn absenoldeb y gallu i'w hadnabod yn weledol neu drwy ddefnyddio technegau ymyrrol. Fodd bynnag, gall data eDNA yn unig fod yn anodd ei ddehongli ar gyfer monitro rhywogaethau, yn enwedig mewn lleoliad morol lle gall cerrynt dŵr ddylanwadu ar ei ddosbarthiad. Yn yr. astudiaeth hon, fe wnaethom ymchwilio i ddosbarthiad gofodol ac amserol rhywogaethau elasmobranciaid mewn dwy Ardal Cadwraeth Arbennig (ACA) oddi ar arfordir Cymru. Fe wnaethom gymryd samplau eDNA misol dros gyfnod o flwyddyn (yn dechrau ym mis Medi 2020 a mis Mawrth 2022 ar gyfer yr. ACAau gogleddol a deheuol, yn y drefn honno), a defnyddio meta‐godau bar i ddatgelu pa rywogaethau elasmobranciaid a oedd yn bresennol. Cyfunwyd y data yma â modelu hydrodynamig a dulliau olrhain gronynnau i efelychu tarddiad posibl yr. eDNA a ganfuwyd. Canfuom 11 rhywogaeth o elasmobranciaid, gan gynnwys y maelgi (Squatina squatina) sydd Mewn Perygl Difrifol a'r ci glas (Galeorhinus galeus). Roedd y rhan fwyaf o'r darganfyddiadau yn y gwanwyn a'r lleiaf yn yr. hydref. Roedd yr. efelychiadau olrhain gronynnau yn rhagweld y byddai eDNA yn cael ei ollwng, ar gyfartaledd, tua 7 km a 15 km (yn yr. ACA gogleddol a deheuol, yn y drefn honno) o'r gorsafoedd samplu lle cafodd ei ganfod. Mae'r canlyniadau hyn yn dangos bod y ddwy ACA yn cynrychioli ardaloedd pwysig ar gyfer elasmobranchs yn y Deyrnas Unedig ac yn dangos y gall dulliau eDNA ynghyd ag efelychiadau olrhain gronynnau gynrychioli ffin newydd ar gyfer monitro rhywogaethau morol.

Keywords: eDNA; hydrodynamic modelling; marine; metabarcoding; sharks and rays.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

FIGURE 1
FIGURE 1
Sampling stations in the two Welsh Special Area for Conservation (SAC)s considered here: Carmarthen Bay and Estuaries (CBAE) (green area) and Pen Llŷn a'r Sarnau (PLAS) (blue area). The inset map in the bottom left illustrates the sites in the wider UK context. Each of the ten sampling stations in the two areas are indicated by black markers, and the abbreviated station names are given in full in the supporting information.
FIGURE 2
FIGURE 2
Elasmobranch detections by species and month across (a) CBAE SAC in 2022/23 and (b) PLAS SAC in 2020/21.
FIGURE 3
FIGURE 3
(a) Detections of Mustelus asterias in CBAE SAC (June 2022) and (b) detection of Galeorhinus galeus in CBAE SAC (June 2022). Black dots represent all sampling stations and triangles around a dot indicate an eDNA detection of the species at that station (in June 2022). The density score represents the percentage of particles present in each 1 km2 grid cell over the 3‐day backtracking simulation.
FIGURE 4
FIGURE 4
Detections of Squatina squatina in PLAS SAC in March and May 2021. Black dots represent sampling stations and triangles around a dot indicate an eDNA detection of the species at that station. The density score represents the percentage of particles present in each 1 km2 grid cell at every 5‐min time interval in the 3‐day backtracking simulation. The areal extent of the simulated particle dispersal covers 10 km2 (March) and 42 km2 (May).
FIGURE 5
FIGURE 5
Detections of G. galeus in PLAS SAC in April, May, July and August 2021. Black dots represent sampling stations and triangles around a dot indicate an eDNA detection of the species at that station. The density score represents the percentage of particles present in each 1 km2 grid cell over the 3‐day simulation period. The areal extent of the simulated particle dispersal covers 7 km2 (April), 65 km2 (May) (across two detections), 27 km2 (July) and 34 km2 (August).
FIGURE 6
FIGURE 6
Connectivity heatmaps showing the backtrack particle mixing between stations for (a) CBAE SAC and (b) PLAS SAC for 3 days at 1 km2 resolution. The colour scales indicate the number of particles as a percentage of the total particles released from each of the 10 stations. Stations are numbers 1–10 are arranged in a clockwise (CW) direction as follows: (a) TS, SA, PE, FE, SI, PB, BU, LL, PO and CA and (b) PO, CA, PE, BL, HA, DY, BA, TY, AB, BO (see Figure 1).
FIGURE A1
FIGURE A1
Number of detections for each elasmobranch species per month in CBAE SAC. Months are numbered according to the order January to December.
FIGURE A2
FIGURE A2
Number of detections for each elasmobranch species per month in PLAS SAC. Months are numbered according to the order January to December.
FIGURE A3
FIGURE A3
Species accumulation curves with 95% confidence intervals for elasmobranch species detection from eDNA in our surveys.
FIGURE A4
FIGURE A4
The maximum distances travelled (a) and surface area covered (b) by backtracked particles from each elasmobranch detection in CBAE SAC.
FIGURE A5
FIGURE A5
The maximum distances travelled (a) and surface area covered (b) by backtracked particles from each elasmobranch detection in PLAS SAC.

Similar articles

References

    1. Andruszkiewicz Allan, E. , Zhang W. G., Lavery A., and Govindarajan A.. 2021. “Environmental DNA Shedding and Decay Rates From Diverse Animal Forms and Thermal Regimes.” Environmental DNA 3, no. 2: 492–514. 10.1002/edn3.141. - DOI
    1. Andruszkiewicz, E. A. , Koseff J. R., Fringer O. B., et al. 2019. “Modeling Environmental DNA Transport in the Coastal Ocean Using Lagrangian Particle Tracking.” Frontiers in Marine Science 6: 477. 10.3389/fmars.2019.00477. - DOI
    1. Bakker, J. , Wangensteen O. S., Chapman D. D., et al. 2017. “Environmental DNA Reveals Tropical Shark Diversity in Contrasting Levels of Anthropogenic Impact.” Scientific Reports 7, no. 1: 16886. 10.1038/s41598-017-17150-2. - DOI - PMC - PubMed
    1. Barker, J. , Davies J., Goralczyk M., et al. 2022. “The Distribution, Ecology and Predicted Habitat Use of the Critically Endangered Angelshark ( Squatina squatina ) in Coastal Waters of Wales and the Central Irish Sea.” Journal of Fish Biology 101: 640–658. 10.1111/jfb.15133. - DOI - PMC - PubMed
    1. Brandão‐Dias, P. F. , Hallack D. M., Snyder E. D., et al. 2023. “Particle Size Influences Decay Rates of Environmental DNA in Aquatic Systems.” Molecular Ecology Resources 23, no. 4: 756–770. - PubMed

LinkOut - more resources