Plasmonic Slippery Surface for Surface-Enhanced Raman Spectroscopy and Protein Adsorption Inhibition
- PMID: 39873317
- PMCID: PMC11822738
- DOI: 10.1021/acs.analchem.4c01844
Plasmonic Slippery Surface for Surface-Enhanced Raman Spectroscopy and Protein Adsorption Inhibition
Abstract
Slippery liquid-infused porous surfaces (SLIPSs) are a class of surface that offers low contact angle hysteresis and low tilt angle for water droplet shedding. This property also endows the surface with pinning-free evaporation, which in turn has been exploited for analyte concentration enrichment for Surface Enhanced Raman Spectroscopic applications and antibiofouling. Herein, we demonstrate a facile approach for creating SLIPS with low contact angle hysteresis and low tilt angle for water shedding by coating the equal-volume mixture of polydimethylsiloxane (PDMS) and silicone oil. By exploiting the in situ plasmonic particle reduction capability of the PDMS, the surface is converted to plasmonic SLIPS, which illustrates its potential as a sensitive analytical platform via surface-enhanced Raman spectroscopy. The Raman spectroscopic studies using crystal violet as a reference sample show a limit of detection of 76 pM. Further, we have demonstrated that the fabricated plasmonic substrate is found to be more efficient in inhibiting proteins (bovine serum albumin) on the surface compared to pristine PDMS surfaces. Our fabricated plasmonic surface can find applications in ultrasensitive molecular detection for applications related to analytical chemistry, diagnostics, environmental monitoring, and national security and more importantly can control the nonspecific adsorption of proteins.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





References
-
- Afzal S.; Daoud W. A.; Langford S. J. Superhydrophobic and Photocatalytic Self-Cleaning Cotton. J. Mater. Chem. A 2014, 2 (42), 18005–18011. 10.1039/C4TA02764G. - DOI
-
- George J. E.; Rodrigues V. R. M.; Mathur D.; Chidangil S.; George S. D. Self-Cleaning Superhydrophobic Surfaces with Underwater Superaerophobicity. Mater. Des. 2016, 100, 8–18. 10.1016/j.matdes.2016.03.104. - DOI
-
- Chen H.; Wang F.; Fan H.; Hong R.; Li W. Construction of MOF-Based Superhydrophobic Composite Coating with Excellent Abrasion Resistance and Durability for Self-Cleaning, Corrosion Resistance, Anti-Icing, and Loading-Increasing Research. Chem. Eng. J. 2021, 408, 127343.10.1016/j.cej.2020.127343. - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources