Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 25:671:125272.
doi: 10.1016/j.ijpharm.2025.125272. Epub 2025 Jan 26.

Formulation screening of lyophilized mRNA-lipid nanoparticles

Affiliations
Free article

Formulation screening of lyophilized mRNA-lipid nanoparticles

Anna Ruppl et al. Int J Pharm. .
Free article

Abstract

Lipid nanoparticles (LNPs) have demonstrated their therapeutic potential as safe and effective drug delivery systems for nucleic acids during the COVID-19 pandemic. However, one of the main challenges during technical CMC (Chemistry, Manufacturing, and Controls) development is their long-term stability at temperatures of 2-8 °C or higher, which may be improved by the removal of water by lyophilization. In this study, we identified lyo-/cryo-protectants for freeze-dried mRNA-LNP formulations beyond conventional excipients such as sucrose and trehalose as Tg-modifiers using polyA as a surrogate. Hydroxypropyl-beta-cyclodextrin, Kollidon® 12 PF (PVP), and dextran 40 kDa were tested in combinations to best stabilize the mRNA-LNPs during the lyophilization process as well as during storage for up to 6 months at 2-8 °C, 25 °C/60 % r.h., and 40 °C/75 % r.h.. We also tested the formulation principle including protectants in- and outside of the LNPs. Formulations were assessed for size, PDI, encapsulation efficiency, and properties related to the lyophilized dosage form. While 10 % (w/V) sucrose formulations successfully stabilized LNPs during the lyophilization process, they were not suitable for storage at temperatures beyond 2-8 °C. The most promising formulations for storage at higher temperatures were identified as 9 % (w/V) trehalose + 1 % (w/V) PVP with only a small increase in size over 6 months at 25 °C maintaining PDI and encapsulation efficiency. Results were verified with eGFP-mRNA-LNPs and tested in cell culture experiments. This study may serve as guidance for formulation scientists to further optimize freeze-dried mRNA-LNP formulations and eventually eliminate the cold chain for mRNA-LNP products.

Keywords: Formulation development; Lipid nanoparticles; Lyophilization; mRNA.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources