Synthesis of L-cysteine in Salmonella typhimurium
- PMID: 398768
- DOI: 10.1002/9780470720554.ch6
Synthesis of L-cysteine in Salmonella typhimurium
Abstract
In Salmonella typhimurium and Escherichia coli the biosynthesis of L-cysteine from L-serine and inorganic sulphate proceeds along a branched convergent pathway along one arm of which sulphate is reduced to sulphide, while on the other L-serine is acetylated to O-acetyl-L-serine. This system is subject to positive genetic control in which growth on a poor sulphur source, O-acetyl-L-serine and the product of the cysB regulatory gene are all required for derepression. The final step consists of the formation of L-cysteine from O-acetyl-L-serine and sulphide. We find that in S. typhimurium this reaction is catalysed by two different enzymes, O-acetylserine sulphydrylase A and O-acetylserine sulphydrylase B, coded for by cysK and cysM respectively. Both enzymes are under the control of the cysteine regulon, and either alone is sufficient for cysteine prototrophy during aerobic growth. Although the advantage to the bacterium of having two separate enzymes to carry out the same reaction is unclear, preliminary data suggest that O-acetylserine sulphydrylase B is preferentially utilized for cysteine biosynthesis during anaerobic growth. We speculate that one enzyme may prefer free sulphide as a substrate while the other may use a bound form of sulphide.
Similar articles
-
Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium.J Bacteriol. 1979 Oct;140(1):141-6. doi: 10.1128/jb.140.1.141-146.1979. J Bacteriol. 1979. PMID: 387718 Free PMC article.
-
A new class of mutants of the cysB regulatory gene for cysteine biosynthesis in Salmonella typhimurium.J Gen Microbiol. 1982 Aug;128(8):1785-90. doi: 10.1099/00221287-128-8-1785. J Gen Microbiol. 1982. PMID: 6754863
-
Interference of azide with cysteine biosynthesis in Salmonella typhimurium.J Gen Microbiol. 1979 Jul;113(1):45-55. doi: 10.1099/00221287-113-1-45. J Gen Microbiol. 1979. PMID: 387913
-
The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli.Mol Microbiol. 1992 Oct;6(19):2747-53. doi: 10.1111/j.1365-2958.1992.tb01453.x. Mol Microbiol. 1992. PMID: 1435253 Review.
-
Structure and mechanism of O-acetylserine sulfhydrylase.J Biol Chem. 2004 Jun 25;279(26):26803-6. doi: 10.1074/jbc.R400001200. Epub 2004 Apr 8. J Biol Chem. 2004. PMID: 15073190 Review.
Cited by
-
A region of a cyanobacterial genome required for sulfate transport.Proc Natl Acad Sci U S A. 1989 Mar;86(6):1949-53. doi: 10.1073/pnas.86.6.1949. Proc Natl Acad Sci U S A. 1989. PMID: 2538823 Free PMC article.
-
Changes in sulfate transport characteristics and protein composition of Anacystis nidulans R2 during sulfur deprivation.J Bacteriol. 1988 Feb;170(2):583-7. doi: 10.1128/jb.170.2.583-587.1988. J Bacteriol. 1988. PMID: 3123460 Free PMC article.
-
Induction of holomycin production and complex metabolic changes by the argR mutation in Streptomyces clavuligerus NP1.Appl Environ Microbiol. 2012 May;78(9):3431-41. doi: 10.1128/AEM.07699-11. Epub 2012 Feb 17. Appl Environ Microbiol. 2012. PMID: 22344669 Free PMC article.
-
Structure-based analysis of CysZ-mediated cellular uptake of sulfate.Elife. 2018 May 24;7:e27829. doi: 10.7554/eLife.27829. Elife. 2018. PMID: 29792261 Free PMC article.
-
Pleiotropic Clostridioides difficile Cyclophilin PpiB Controls Cysteine-Tolerance, Toxin Production, the Central Metabolism and Multiple Stress Responses.Front Pharmacol. 2019 Apr 5;10:340. doi: 10.3389/fphar.2019.00340. eCollection 2019. Front Pharmacol. 2019. PMID: 31024308 Free PMC article.