Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 9;16(8):3430-3439.
doi: 10.1039/d4sc07532c. eCollection 2025 Feb 19.

Functionally active modulators targeting the LRRK2 WD40 repeat domain identified by FRASE-bot in CACHE Challenge #1

Affiliations

Functionally active modulators targeting the LRRK2 WD40 repeat domain identified by FRASE-bot in CACHE Challenge #1

Akhila Mettu et al. Chem Sci. .

Abstract

Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites. In two screening rounds, 84 compounds were procured for experimental testing and 8 were confirmed to bind LRRK2-WDR with dissociation constants (K d) ranging from 3 to 41 μM. To investigate the functional effect of WDR ligands, they were tested for their ability to modify the LRRK2 activity markers in HEK293T cells. Two compounds showed statistically significant increases in the kinase activity of WT LRRK2, and two compounds affected the conformation and kinase activity of major LRRK2 mutants.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. FRASE database screening. (A) 2544 ligand fragments (magenta sticks) seeded in the LRRK2 WDR structure (orange ribbons); (B) 85 ligand fragments with scores >0.4 are grouped into five distinct clusters (1–5); (C) potential ligand-binding pockets corresponding to clusters 1–5.
Fig. 2
Fig. 2. The experimentally confirmed Round-1 hits. Chemical structures, LRRK2 Kd values, solubility, and SPR dose–response data for the Round-1 hits 1 (A) and 2 (B); docking poses for 1 (C) and 2 (D).
Fig. 3
Fig. 3. The experimentally confirmed Round-2 hits. Chemical structures and LRRK2 Kd values, and solubility for the Round-3 hits 3–8.
Fig. 4
Fig. 4. Cellular effects of compounds on LRRK2 kinase activity. (A) Example of HEK293T cells transfected with a 3×Flag-tagged LRRK2 WT or Y1699C pathogenic mutant and treated with DMSO, 30 nM MLi-2, a potent kinase domain inhibitor (ref. 35), or 30 μM of the different hits for 2 h, cell lysates analyzed by western blotting for Flag, pS1292 LRRK2, pS935 LRRK2, RAB10, pT73 RAB10 and α-tubulin as the loading control. (B) Quantification of the pS935 LRRK2/LRRK2 ratio of blots depicted in (A). *p < 0.05. (C) Quantification of the pS1292 LRRK2/LRRK2 ratio of blots depicted in (A). *p < 0.05, **p < 0.01. (D) Quantification of the pT73 RAB10/RAB10 ratio of blots depicted in (A). *p < 0.05, **p < 0.01, and ****p < 0.001.

Similar articles

  • In silico screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulations.
    Gutkin E, Gusev F, Gentile F, Ban F, Koby SB, Narangoda C, Isayev O, Cherkasov A, Kurnikova MG. Gutkin E, et al. Chem Sci. 2024 Apr 11;15(23):8800-8812. doi: 10.1039/d3sc06880c. eCollection 2024 Jun 12. Chem Sci. 2024. PMID: 38873063 Free PMC article.
  • CACHE Challenge #1: Targeting the WDR Domain of LRRK2, A Parkinson's Disease Associated Protein.
    Li F, Ackloo S, Arrowsmith CH, Ban F, Barden CJ, Beck H, Beránek J, Berenger F, Bolotokova A, Bret G, Breznik M, Carosati E, Chau I, Chen Y, Cherkasov A, Corte DD, Denzinger K, Dong A, Draga S, Dunn I, Edfeldt K, Edwards A, Eguida M, Eisenhuth P, Friedrich L, Fuerll A, Gardiner SS, Gentile F, Ghiabi P, Gibson E, Glavatskikh M, Gorgulla C, Guenther J, Gunnarsson A, Gusev F, Gutkin E, Halabelian L, Harding RJ, Hillisch A, Hoffer L, Hogner A, Houliston S, Irwin JJ, Isayev O, Ivanova A, Jacquemard C, Jarrett AJ, Jensen JH, Kireev D, Kleber J, Koby SB, Koes D, Kumar A, Kurnikova MG, Kutlushina A, Lessel U, Liessmann F, Liu S, Lu W, Meiler J, Mettu A, Minibaeva G, Moretti R, Morris CJ, Narangoda C, Noonan T, Obendorf L, Pach S, Pandit A, Perveen S, Poda G, Polishchuk P, Puls K, Pütter V, Rognan D, Roskams-Edris D, Schindler C, Sindt F, Spiwok V, Steinmann C, Stevens RL, Talagayev V, Tingey D, Vu O, Walters WP, Wang X, Wang Z, Wolber G, Wolf CA, Wortmann L, Zeng H, Zepeda CA, Zhang KYJ, Zhang J, Zheng S, Schapira M. Li F, et al. J Chem Inf Model. 2024 Nov 25;64(22):8521-8536. doi: 10.1021/acs.jcim.4c01267. Epub 2024 Nov 5. J Chem Inf Model. 2024. PMID: 39499532
  • Active Learning-Guided Hit Optimization for the Leucine-Rich Repeat Kinase 2 WDR Domain Based on In Silico Ligand-Binding Affinities.
    Gusev F, Gutkin E, Gentile F, Ban F, Koby SB, Li F, Chau I, Ackloo S, Arrowsmith CH, Bolotokova A, Ghiabi P, Gibson E, Halabelian L, Houliston S, Harding RJ, Hutchinson A, Loppnau P, Perveen S, Seitova A, Zeng H, Schapira M, Cherkasov A, Isayev O, Kurnikova MG. Gusev F, et al. J Chem Inf Model. 2025 Jun 9;65(11):5706-5717. doi: 10.1021/acs.jcim.5c00588. Epub 2025 May 25. J Chem Inf Model. 2025. PMID: 40415386 Free PMC article.
  • Leucine-rich repeat kinase 2 (LRRK2) inhibitors for Parkinson's disease: a patent review of the literature to date.
    Morez M, Lara Ordóñez AJ, Melnyk P, Liberelle M, Lebègue N, Taymans JM. Morez M, et al. Expert Opin Ther Pat. 2024 Sep;34(9):773-788. doi: 10.1080/13543776.2024.2378076. Epub 2024 Jul 19. Expert Opin Ther Pat. 2024. PMID: 39023243 Review.
  • Targeting leucine-rich repeat kinase 2 (LRRK2) for the treatment of Parkinson's disease.
    Domingos S, Duarte T, Saraiva L, Guedes RC, Moreira R. Domingos S, et al. Future Med Chem. 2019 Aug;11(15):1953-1977. doi: 10.4155/fmc-2018-0484. Future Med Chem. 2019. PMID: 31517532 Review.

Cited by

References

    1. Rong S. Xu G. Liu B. Sun Y. Snetselaar L. G. Wallace R. B. Li B. Liao J. Bao W. Trends in Mortality From Parkinson Disease in the United States, 1999–2019. Neurology. 2021;97:e1986–e1993. doi: 10.1212/WNL.0000000000012826. - DOI - PubMed
    1. Taymans J.-M. Fell M. Greenamyre T. Hirst W. D. Mamais A. Padmanabhan S. Peter I. Rideout H. Thaler A. Perspective on the current state of the LRRK2 field. npj Parkinson's Dis. 2023;9:104. doi: 10.1038/s41531-023-00544-7. - DOI - PMC - PubMed
    1. Zhang P. Fan Y. Ru H. Wang L. Magupalli V. G. Taylor S. S. Alessi D. R. Wu H. Crystal structure of the WD40 domain dimer of LRRK2. Proc. Natl. Acad. Sci. U. S. A. 2019;116:1579–1584. doi: 10.1073/pnas.1817889116. - DOI - PMC - PubMed
    1. Deniston C. K. Salogiannis J. Mathea S. Snead D. M. Lahiri I. Matyszewski M. Donosa O. Watanabe R. Böhning J. Shiau A. K. Knapp S. Villa E. Reck-Peterson S. L. Leschziner A. E. Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. Nature. 2020;588:344–349. doi: 10.1038/s41586-020-2673-2. - DOI - PMC - PubMed
    1. Alessi D. R. Sammler E. LRRK2 kinase in Parkinson's disease. Science. 2018;360:36–37. doi: 10.1126/science.aar5683. - DOI - PubMed

LinkOut - more resources