Ultrasound-Enhanced Spleen-Targeted mRNA Delivery via Fluorinated PEGylated Lipid Nanoparticles for Immunotherapy
- PMID: 39878170
- DOI: 10.1002/anie.202500878
Ultrasound-Enhanced Spleen-Targeted mRNA Delivery via Fluorinated PEGylated Lipid Nanoparticles for Immunotherapy
Abstract
Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection. Through liquid-to-gas phase transition, we enabled the controlled shedding of fluorinated PEG lipids from F-LNPs, facilitating cellular uptake, membrane fusion, and mRNA release. In vivo results demonstrated that US-assisted F-LNPs increased mRNA transfection approximately 4.0-fold in the spleen following intravenous administration. Notably, the F-LNPs achieved effective mRNA delivery to antigen-presenting cell subsets, such as dendritic cells, macrophages, and B cells. The targeted delivery of full-length ovalbumin-encoding mRNA vaccine induced significant CD8+ T cell response and exhibited excellent therapeutic effect against the ovalbumin-transduced B16F10 tumor model. These findings establish a novel strategy for spleen-specific mRNA delivery through the combination of fluorinated PEG lipids and US treatment, which holds substantial promise for enhancing the efficacy of immunotherapy, potentially broadening the scope of clinical applications for mRNA-based therapy.
Keywords: fluorinated PEG lipid; mRNA delivery; splenic targeting; tumor therapy; ultrasound.
© 2025 Wiley-VCH GmbH.
Similar articles
-
Fluorinated Lipid Nanoparticles for Enhancing mRNA Delivery Efficiency.ACS Nano. 2024 Mar 19;18(11):7825-7836. doi: 10.1021/acsnano.3c04507. Epub 2024 Mar 7. ACS Nano. 2024. PMID: 38452271
-
Role of PEGylated lipid in lipid nanoparticle formulation for in vitro and in vivo delivery of mRNA vaccines.J Control Release. 2025 Apr 10;380:108-124. doi: 10.1016/j.jconrel.2025.01.071. Epub 2025 Feb 5. J Control Release. 2025. PMID: 39875076
-
Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA.J Nanobiotechnology. 2024 Sep 11;22(1):553. doi: 10.1186/s12951-024-02812-x. J Nanobiotechnology. 2024. PMID: 39261807 Free PMC article.
-
Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy.J Control Release. 2024 Aug;372:113-140. doi: 10.1016/j.jconrel.2024.06.023. Epub 2024 Jun 15. J Control Release. 2024. PMID: 38876358 Review.
-
Regulating mRNA endosomal escape through lipid rafts: A review.Int J Pharm. 2025 Apr 30;675:125571. doi: 10.1016/j.ijpharm.2025.125571. Epub 2025 Apr 6. Int J Pharm. 2025. PMID: 40199432 Review.
Cited by
-
Formulation-Driven Optimization of PEG-Lipid Content in Lipid Nanoparticles for Enhanced mRNA Delivery In Vitro and In Vivo.Pharmaceutics. 2025 Jul 22;17(8):950. doi: 10.3390/pharmaceutics17080950. Pharmaceutics. 2025. PMID: 40870973 Free PMC article.
-
Smart Nanoarchitectures for Precision RNA Delivery: Harnessing Endogenous and Exogenous Stimuli in Cancer Treatment.Theranostics. 2025 Jul 2;15(15):7747-7778. doi: 10.7150/thno.112492. eCollection 2025. Theranostics. 2025. PMID: 40756358 Free PMC article. Review.
References
-
- None
-
- U. Sahin, K. Karikó, Ö. Türeci, Nat. Rev. Drug Discovery 2014, 13, 759–780;
-
- J. Kim, Y. Eygeris, M. Gupta, G. Sahay, Adv. Drug Delivery Rev. 2021, 170, 83–112;
-
- N. Chaudhary, D. Weissman, K. A. Whitehead, Nat. Rev. Drug Discovery 2021, 20, 817–838.
-
- M. Ganley, L. E. Holz, J. J. Minnell, M. N. de Menezes, O. K. Burn, K. C. Y. Poa, S. L. Draper, K. English, S. T. S. Chan, R. J. Anderson, B. J. Compton, A. J. Marshall, A. Cozijnsen, Y. C. Chua, Z. Ge, K. J. Farrand, J. C. Mamum, C. Xu, I. A. Cockburn, K. Yui, P. Bertolino, S. Gras, J. Le Nours, J. Rossjohn, D. Fernandez-Ruiz, G. I. McFadden, D. F. Ackerley, G. F. Painter, I. F. Hermans, W. R. Heath, Nat. Immunol. 2023, 24, 1487–1498.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials