Antimicrobial and antibiofilm activity of prepared thymol@UIO-66 and thymol/ZnONPs@UIO-66 nanoparticles against Methicillin-resistant Staphylococcus aureus: A synergistic approach
- PMID: 39879671
- DOI: 10.1016/j.colsurfb.2025.114529
Antimicrobial and antibiofilm activity of prepared thymol@UIO-66 and thymol/ZnONPs@UIO-66 nanoparticles against Methicillin-resistant Staphylococcus aureus: A synergistic approach
Abstract
This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively. Successful encapsulation of the antibacterial drug with a high entrapment efficiency of 64 % for Thymol was approved, and 49 % in-vitro release of Thymol was achieved for 72 hours. In-vitro antibacterial assays revealed promising results, with the drug-loaded nanoparticles exhibiting significantly lower MIC values and enhanced bactericidal activity against S. Aureus bacterial strains compared to the free drug, as demonstrated by agar disk diffusion and time-kill assays. MIC values reduced from a range of 31.25-250 µg/ml for free Thymol and 12.5-100 µg/ml for free ZnONPs to 3.9-62.5 µg/ml for Thymol@UIO-66 and 1.95-15.63 µg/ml for Thymol/ZnONPs@UIO-66. According to the results, the mixture of both Thymol and ZnONPs had 41 % and 16 % more antibiofilm activities in comparison with free Thymol and free ZnONPs, respectively. Furthermore, Thymol@UIO-66 had 25 % higher antibiofilm activities relative to not-encapsulated Thymol and ZnONPs, and this improvement was even 46 % more in Thymol/ZnONPs@UIO-66 in comparison with Thymol@UIO-66. Overall, this study demonstrates the potential of Thymol/ZnONPs@UIO-66 frameworks as a promising drug delivery platform for effective antibacterial therapy. This approach to overcome antibiotic resistance and improve treatment efficacy potentially.
Keywords: Anti-biofilm activities; Antibacterial activity; Thymol; UIO-66 frameworks; Zinc oxide nanoparticles.
Copyright © 2025. Published by Elsevier B.V.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical