Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 30:1-9.
doi: 10.1080/01480545.2025.2457386. Online ahead of print.

Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats

Affiliations

Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats

Bahtinur Yeter et al. Drug Chem Toxicol. .

Abstract

The purpose of this trial was to assess the effects of methylphenidate on the kidney tissues and to investigate the protective effect of adenosine triphosphate (ATP) against possible methylphenidate nephrotoxicity in rats. The rats were separated into; healthy control (HG), methylphenidate (MPHG), ATP (ATPG), and ATP+ methylphenidate (AMPG). The ATPG and AMPG groups were administered ATP 4 mg/kg bw/d, and the HG and MPHG groups received distilled water intraperitoneally. One hour from, ATP and distilled water administration, methylphenidate 10 mg/kg bw/d was applied via oral gavage to the AMPG and MPHG groups once daily for 30 d (1 × 1). Animals were euthanized after 30 d and tissues were collected. The levels of certain oxidant/antioxidant parameters, pro-inflammatory cytokines, and Blood urea nitrogen (BUN) and creatinine levels were measured. Kidneys were also examined histopathologically. ATP inhibited the increase in oxidant and decrease antioxidant levels induced by methylphenidate. The amounts of pro-inflammatory cytokines were increased in methylphenidate-treated kidney tissue compared with the HG and AMPG groups. However, ATP increased oxidative damage markers and cytokines levels close to the healthy group. Serum BUN and creatinine levels increased with methylphenidate but ATP prevented BUN and creatinine from rising in the ATPG and MPHG groups. ATP also reduced the histopathological damage increased by methylphenidate. The potential efficacy of ATP in treating kidney damage induced by methylphenidate use.

Keywords: Methylphenidate; adenosine triphosphate; nephrotoxicity; oxidative damage; rat.

PubMed Disclaimer

LinkOut - more resources