DNA Polymerase IV dinB Favors the Adaptive Fitness of mcr-carrying Bacteria Through a Negative Feedback Regulatory Mechanism
- PMID: 39887566
- PMCID: PMC11948064
- DOI: 10.1002/advs.202411994
DNA Polymerase IV dinB Favors the Adaptive Fitness of mcr-carrying Bacteria Through a Negative Feedback Regulatory Mechanism
Abstract
The plasmid-borne resistance gene mcr drastically undermines the effectiveness of colistin, posing a substantial threat to public health. Although several key plasmid elements that balance mcr-1 persistence and bacterial growth are identified, the regulatory interactions between mcr-1 and host bacteria remain poorly understood. Using a genome-wide CRISPRi crRNA library, it is identified that DNA polymerase IV, dinB, is essential for controlling the fitness cost associated with mcr-1 in Escherichia coli. The absence of dinB operon enhances mcr-1-mediated colistin resistance but simultaneously compromises bacterial growth and competitiveness. Meanwhile, dinB deficiency mitigates inflammatory response in RAW267.4 cells and enhances bacterial colonization in murine tissues. Further investigation reveals that mcr-1 actively upregulates dinB expression, with the increased reactive oxygen species induced by mcr-1 being crucial for this activation. These findings suggest that dinB modulates mcr expression and bacterial fitness via a negative feedback regulatory mechanism. Leveraging this regulatory relationship, a Toxin-Intein is engineered under the control of dinB promoter to selectively target and kill mcr-positive E. coli both in vitro and in vivo. Overall, the work uncovers a novel adaptive mechanism underlying mcr persistence and provides a precise antimicrobial strategy to combat antibiotic-resistant pathogens.
Keywords: bacteria; colistin resistance; dinB; fitness cost; mcr expression.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
Regulatory fine-tuning of mcr-1 increases bacterial fitness and stabilises antibiotic resistance in agricultural settings.ISME J. 2023 Nov;17(11):2058-2069. doi: 10.1038/s41396-023-01509-7. Epub 2023 Sep 18. ISME J. 2023. PMID: 37723338 Free PMC article.
-
Resensitizing tigecycline- and colistin-resistant Escherichia coli using an engineered conjugative CRISPR/Cas9 system.Microbiol Spectr. 2024 Apr 2;12(4):e0388423. doi: 10.1128/spectrum.03884-23. Epub 2024 Feb 22. Microbiol Spectr. 2024. PMID: 38385691 Free PMC article.
-
PixR, a Novel Activator of Conjugative Transfer of IncX4 Resistance Plasmids, Mitigates the Fitness Cost of mcr-1 Carriage in Escherichia coli.mBio. 2022 Feb 22;13(1):e0320921. doi: 10.1128/mbio.03209-21. Epub 2022 Jan 4. mBio. 2022. PMID: 35089067 Free PMC article.
-
A ProQ/FinO family protein involved in plasmid copy number control favours fitness of bacteria carrying mcr-1-bearing IncI2 plasmids.Nucleic Acids Res. 2021 Apr 19;49(7):3981-3996. doi: 10.1093/nar/gkab149. Nucleic Acids Res. 2021. PMID: 33721023 Free PMC article.
-
Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance.Int J Antimicrob Agents. 2023 Feb;61(2):106713. doi: 10.1016/j.ijantimicag.2023.106713. Epub 2023 Jan 11. Int J Antimicrob Agents. 2023. PMID: 36640846 Review.
References
-
- Grégoire N., Aranzana‐Climent V., Magréault S., Marchand S., Couet W., Clin. Pharmacokinet. 2017, 56, 1441. - PubMed
-
- WHO, Critically important antimicrobials for human medicine, World Health Organization, Geneva: 2019.
-
- Dixon R. A., Chopra I., J. Antimicrob. Chemother. 1986, 18, 557. - PubMed
-
- a) Liu Y.‐Y, Wang Y., Walsh T. R., Yi L.‐X., Zhang R., Spencer J., Doi Y., Tian G., Dong B., Huang X., Yu L.‐F., Gu D., Ren H., Chen X., Lv L., He D., Zhou H., Liang Z., Liu J.‐H., Shen J., Lancet Infect. Dis. 2016, 16, 161; - PubMed
- b) Hussein N. H., Al‐Kadmy I. M. S., Taha B. M., Hussein J. D., Mol. Biol. Rep. 2021, 48, 2897; - PubMed
- c) Rhouma M., Madec J. Y., Laxminarayan R., Int. J. Antimicrob. Agents 2023, 61, 106713. - PubMed
-
- a) Xu Y., Zhong L.‐L., Srinivas S., Sun J., Huang M., Paterson D. L., Lei S., Lin J., Li X., Tang Z., Feng S., Shen C., Tian G.‐B., Feng Y., EBioMedicine 2018, 34, 139; - PMC - PubMed
- b) Zhang H., Hou M., Xu Y., Srinivas S., Huang M., Liu L., Feng Y., Commun. Biol. 2019, 2, 36; - PMC - PubMed
- c) Zhang H., Zong Z., Lei S., Srinivas S., Sun J., Feng Y., Huang M., Feng Y., Adv. Sci. 2019, 6, 1900034. - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources