Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Mar;37(10):e2413748.
doi: 10.1002/adma.202413748. Epub 2025 Jan 31.

Ultrafast Infrared Plasmonics

Affiliations
Review

Ultrafast Infrared Plasmonics

Yang Luo et al. Adv Mater. 2025 Mar.

Abstract

Ultrafast plasmonics represents a cutting-edge frontier in light-matter interactions, providing a unique platform to study electronic interactions and collective motions across femtosecond to picosecond timescales. In the infrared regime, where energy aligns with the rearrangements of low-energy electrons, molecular vibrations, and thermal fluctuations, ultrafast plasmonics can be a powerful tool for revealing ultrafast electronic phase transitions, controlling molecular reactions, and driving subwavelength thermal processes. Here, the evolution of ultrafast infrared plasmonics, discussing the recent progress in their manipulation, detection, and applications is reviewed. The future opportunities, including their potential to probe electronic correlations, investigate intrinsic ultrafast plasmonic interactions, and enable advanced applications in quantum information are highlighted, which may be promoted by multi-physical field integrated ultrafast techniques.

Keywords: electronic correlation; infrared regime; molecular reaction control; nonlinear effect; thermal management; ultrafast plasmonics.

PubMed Disclaimer

References

    1. a) Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, D. N. Basov, Nature 2012, 487, 82;
    1. b) J. Chen, M. Badioli, P. Alonso‐Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, F. H. Koppens, Nature 2012, 487, 77;
    1. c) D. J. Rizzo, B. S. Jessen, Z. Sun, F. L. Ruta, J. Zhang, J. Q. Yan, L. Xian, A. S. McLeod, M. E. Berkowitz, K. Watanabe, T. Taniguchi, S. E. Nagler, D. G. Mandrus, A. Rubio, M. M. Fogler, A. J. Millis, J. C. Hone, C. R. Dean, D. N. Basov, Nano Lett. 2020, 20, 8438.
    1. a) H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. Garcia de Abajo, T. Low, Z. Sun, Q. Dai, Nat. Commun. 2019, 10, 1131;
    1. b) D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, H. Altug, Science 2015, 349, 165;

LinkOut - more resources