Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Feb 8;337(2):351-62.
doi: 10.1016/0378-4347(85)80048-7.

Determination of chlorprothixene and its sulfoxide metabolite in plasma by high-performance liquid chromatography with ultraviolet and amperometric detection

Determination of chlorprothixene and its sulfoxide metabolite in plasma by high-performance liquid chromatography with ultraviolet and amperometric detection

M A Brooks et al. J Chromatogr. .

Abstract

This communication describes a rapid, sensitive and selective method for the assay of chlorprothixene and its sulfoxide metabolite in human plasma, using reversed-phase high-performance liquid chromatography. Alkalinized plasma was extracted with heptane--isoamyl alcohol (99:1), after addition of thioridazine as the internal standard. The residue obtained after evaporation of this extract was chromatographed on a cyano column, using acetonitrile--0.02 M potassium dihydrogen phosphate pH 4.5 (60:40) as the mobile phase with ultraviolet (229 nm) detection. Quantitation was based on peak height ratios over the concentration range of 5.0-50.0 ng/ml for both compounds with 85% and 90% recovery for chlorprothixene and its sulfoxide metabolite, respectively, using a 1.0-ml plasma sample. The assay chromatographically resolves chlorprothixene and the sulfoxide metabolite from the N-desmethyl metabolite, which can only be semi-quantitated owing to low and variable recoveries. The method was used to obtain plasma concentration versus time profiles in two subjects after oral administration of 100 mg of chlorprothixene suspension and in two additional subjects following overdosages of chlorprothixene estimated to exceed several hundred milligrams. These analyses demonstrated that the sulfoxide metabolite is the predominant plasma component following therapeutic administration and overdosages. High-performance liquid chromatography with oxidative amperometric detection with the glassy carbon electrode was also evaluated. Although this procedure demonstrated comparable sensitivity and precision to ultraviolet detection for the analysis of chlorprothixene and N-desmethyl chlorprothixene, the sulfoxide metabolite could not be measured with high sensitivity (less than 100 ng/ml) owing to endogenous interferences. Hence the utility of this alternative assay technique is limited.

PubMed Disclaimer