Self-healing and cell-free vascular grafts
- PMID: 39889339
- DOI: 10.1016/j.biomaterials.2025.123121
Self-healing and cell-free vascular grafts
Abstract
We developed an innovative self-healing tissue engineering vessel (SH-TEV) that heals fast after repeated needle punctures, while maintaining artery like mechanical strength and toughness even under wet conditions. The SH-TEV is designed as a bilayer tube engineered by electrospinning an autonomous self-healing polyurethane, PU-DAA, around a tube of a native biomaterial, small intestinal submucosa (SIS), that can be functionalized with biomolecules to recruit host cells and promote endothelialization. The self-healing PU-DAA was designed to incorporate multi-strength H-bonds and reversible hydrazone bonds and exhibited high strength (3.95 ± 0.16 MPa), toughness (23.01 ± 2.37 MJ/m3), and fast autonomous self-healing (86.44 ± 6.65 % after 12 h) under physiological conditions. The self-healing layer supported attachment, spreading and proliferation of fibroblasts, indicating biocompatibility. When SH-TEVs were implanted as interpositional grafts into the rat aorta for 4 weeks, they remained patent without any thrombosis (100 % animal survival and 100 % graft patency), were endothelialized and developed a smooth muscle cell containing vascular wall. In addition, they showed excellent self-healing ability following needle puncture (hemostatic time <40 s) immediately after implantation and four weeks later. Collectively, these results demonstrate the potential of SH-TEVs as vascular access conduits for hemodialysis applications.
Copyright © 2025 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
