Sorafenib-induced cardiovascular toxicity: A cause for concern
- PMID: 39889871
- DOI: 10.1016/j.cbi.2025.111388
Sorafenib-induced cardiovascular toxicity: A cause for concern
Abstract
Sorafenib, a multi-target tyrosine kinase inhibitor, is primarily used to manage hepatocellular carcinoma, advanced renal cell carcinoma, and differentiated thyroid cancer. Although this drug extends patient survival and slows tumor progression, its cardiovascular toxicity substantially impacts of quality of life. Effective the prevention and treatment of the resulting complications are needed. The mechanisms underlying of sorafenib-induced cardiovascular toxicity are complex, and remain incompletely understood despite extensive research. In this review, we discuss the incidence of sorafenib-induced cardiovascular toxicity, including hypertension, thromboembolism, and heart failure in clinical settings. We also summarize current research on the underlying mechanisms, such as ferroptosis, necroptosis, autophagy, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we explore studies regarding the protective effects of various drugs against sorafenib-induced cardiovascular toxicity. This in-depth synthesis of data regarding the clinical manifestations and mechanisms of sorafenib-induced cardiotoxicity provides a valuable scientific foundation for developing therapeutic drugs to combat these adverse effects.
Keywords: Cardiovascular toxicity; Drug formulation; Interventions; Pathogenesis; Sorafenib.
Copyright © 2025 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Lijing Tang reports financial support was provided by National Natural Science Foundation of China. Lijing Tang reports financial support was provided by Natural Science Foundation of Hunan Province. LijingTang reports was provided by Hengyang Xiaohe Science and Technology Talent Project. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources