Concepts and Methods for Predicting Viral Evolution
- PMID: 39890732
- DOI: 10.1007/978-1-0716-4326-6_14
Concepts and Methods for Predicting Viral Evolution
Abstract
The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in circulating viral strains from year to year. These changes are typically driven by adaptive mutations, particularly in the antigenic epitopes, the regions of the viral surface protein hemagglutinin targeted by human antibodies. Here, we describe a consistent set of methods for data-driven predictive analysis of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods of up to 1 year. Furthermore, we obtain comparative estimates of protection against future viral populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection. Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2 are available at https://previr.app .
Keywords: Antigenic evolution; Fitness models; Influenza vaccines; Population immunity.
© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Update of
-
Concepts and methods for predicting viral evolution.ArXiv [Preprint]. 2024 Nov 27:arXiv:2403.12684v3. ArXiv. 2024. Update in: Methods Mol Biol. 2025;2890:253-290. doi: 10.1007/978-1-0716-4326-6_14. PMID: 38745695 Free PMC article. Updated. Preprint.
-
Concepts and methods for predicting viral evolution.bioRxiv [Preprint]. 2024 Nov 30:2024.03.19.585703. doi: 10.1101/2024.03.19.585703. bioRxiv. 2024. Update in: Methods Mol Biol. 2025;2890:253-290. doi: 10.1007/978-1-0716-4326-6_14. PMID: 38746108 Free PMC article. Updated. Preprint.
Similar articles
-
Concepts and methods for predicting viral evolution.bioRxiv [Preprint]. 2024 Nov 30:2024.03.19.585703. doi: 10.1101/2024.03.19.585703. bioRxiv. 2024. Update in: Methods Mol Biol. 2025;2890:253-290. doi: 10.1007/978-1-0716-4326-6_14. PMID: 38746108 Free PMC article. Updated. Preprint.
-
Concepts and methods for predicting viral evolution.ArXiv [Preprint]. 2024 Nov 27:arXiv:2403.12684v3. ArXiv. 2024. Update in: Methods Mol Biol. 2025;2890:253-290. doi: 10.1007/978-1-0716-4326-6_14. PMID: 38745695 Free PMC article. Updated. Preprint.
-
A predictive fitness model for influenza.Nature. 2014 Mar 6;507(7490):57-61. doi: 10.1038/nature13087. Epub 2014 Feb 26. Nature. 2014. PMID: 24572367
-
[Bioinformatics technologies for the analysis of antigenic evolution of influenza viruses].Uirusu. 2011 Jun;61(1):3-13. doi: 10.2222/jsv.61.3. Uirusu. 2011. PMID: 21972551 Review. Japanese.
-
The role of genomics in tracking the evolution of influenza A virus.PLoS Pathog. 2009 Oct;5(10):e1000566. doi: 10.1371/journal.ppat.1000566. Epub 2009 Oct 26. PLoS Pathog. 2009. PMID: 19855818 Free PMC article. Review.
Cited by
-
T cell epitope mapping reveals immunodominance of evolutionarily conserved regions within SARS-CoV-2 proteome.iScience. 2025 Jul 2;28(8):113044. doi: 10.1016/j.isci.2025.113044. eCollection 2025 Aug 15. iScience. 2025. PMID: 40746995 Free PMC article.
-
T cell epitope mapping reveals immunodominance of evolutionarily conserved regions within SARS-CoV-2 proteome.bioRxiv [Preprint]. 2025 Apr 9:2024.10.23.619918. doi: 10.1101/2024.10.23.619918. bioRxiv. 2025. Update in: iScience. 2025 Jul 02;28(8):113044. doi: 10.1016/j.isci.2025.113044. PMID: 39484455 Free PMC article. Updated. Preprint.
-
Timely vaccine strain selection and genomic surveillance improves evolutionary forecast accuracy of seasonal influenza A/H3N2.medRxiv [Preprint]. 2024 Sep 13:2024.09.11.24313489. doi: 10.1101/2024.09.11.24313489. medRxiv. 2024. PMID: 39314963 Free PMC article. Preprint.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous