A Systematic Review on the Dual Role of Interleukin-1 in CAR T-Cell Therapy: Enhancer and Mitigator
- PMID: 39891450
- PMCID: PMC11829154
- DOI: 10.61186/ibj.4444
A Systematic Review on the Dual Role of Interleukin-1 in CAR T-Cell Therapy: Enhancer and Mitigator
Abstract
Chimeric antigen receptor T-cell therapy is a groundbreaking approach for treating certain hematologic malignancies and solid tumors. However, its application is limited by severe toxicities, particularly CRS and ICANS, dramatically limit its broader application. IL-1 plays a crucial role in both enhancing CAR T-cell efficacy and driving these toxic effects. This review systematically examines the dual functions of IL-1, highlighting its role in promoting CAR T-cell activation and persistence while contributing to CRS and ICANS pathogenesis. Strategies to mitigate IL-1-driven toxicities, including IL-1 receptor antagonists, monoclonal antibodies, IL-1 trapping, and interference with IL-1 production, show promise in reducing adverse effects without compromising therapeutic efficacy. Understanding the complex role of IL-1 in CAR T-cell therapy may lead to optimized treatment strategies, improving safety and expanding clinical applicability. Further research is essential to refine IL-1-targeted interventions and enhance the therapeutic potential of CAR T-cell therapy.
Chimeric antigen receptor (CAR) T-cell therapy is a groundbreaking approach for treating certain hematologic malignancies and solid tumors. However, its application is limited by severe toxicities, particularly cytokine release syndrome (CRS) and cell-associated neurotoxicity syndrome (ICANS), dramatically limit its broader application. IL-1 plays a crucial role in both enhancing CAR T-cell efficacy and driving these toxic effects. This review systematically examines the dual functions of IL-1, highlighting its role in promoting CAR T-cell activation and persistence while contributing to CRS and ICANS pathogenesis. Strategies to mitigate IL-1-driven toxicities, including IL-1 receptor antagonists, monoclonal antibodies, IL-1 trapping, and interference with IL-1 production, show promise in reducing adverse effects without compromising therapeutic efficacy. Understanding the complex role of IL-1 in CAR T-cell therapy may lead to optimized treatment strategies, improving safety and expanding clinical applicability. Further research is essential to refine IL-1-targeted interventions and enhance the therapeutic potential of CAR T-cell therapy.
Keywords: Interleukin-1; cytokine release syndrome; Chimeric antigen receptor T cells.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
References
-
- Vanegas YM, Mohty R, Gadd ME, Luo Y, Aljurf M, Qin H, et al. CAR-T cell therapies for B-cell lymphoid malignancies: identifying targets beyond CD19. Hematol Oncol Stem Cell Ther. 2022;15(3):81–93. - PubMed
-
- Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR, et al. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett. 2013;334(2):237–44. - PubMed
-
- Maali Ah, Maroufi F, Sadeghi F, Atashi A, Kouchaki R, Moghadami M, et al. Induced pluripotent stem cell technology: trends in molecular biology, from genetics to epigenetics. Epigenomics. 2021;13(8):631–47. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources