Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 15:993:177334.
doi: 10.1016/j.ejphar.2025.177334. Epub 2025 Feb 1.

Tumor vascular normalization by B7-H3 blockade augments T lymphocyte-mediated antitumor immunity

Affiliations

Tumor vascular normalization by B7-H3 blockade augments T lymphocyte-mediated antitumor immunity

Xin Dai et al. Eur J Pharmacol. .

Abstract

Triple-negative breast cancer (TNBC), defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents unique clinical challenges and generally predicts a less favorable prognosis. Despite recent advancements in TNBC treatment, a subset of patients remains resistant to immunotherapy. B7-H3, a member of the B7 family of immune checkpoints, is correlated with poor outcomes in various cancers and is distinctively expressed in tumor vasculature, marking it as a potential biomarker for tumor-associated endothelial cells. We found high expression of B7-H3 in the endothelial cells of the postoperative tissue of TNBC patients. Elevated gene expression of CD276 (encoding B7-H3) and PECAM1 (encoding CD31) in TNBC is associated with poor prognosis. Anti-B7-H3 blockade reduces tumor burden and promotes lymphocyte infiltration in a TNBC mouse model. Additionally, anti-B7-H3 blockade promotes tumor vessel normalization and enhances programmed cell death ligand 1 (PD-L1) expression. Synergistic effects were observed when B7-H3 blockade was combined with programmed cell death protein 1 (PD-1) inhibition in the TNBC mouse model. Furthermore, anti-B7-H3 inhibits human umbilical vein endothelial cell (HUVEC) proliferation by suppression of the nuclear factor kappa-B (NF-κB) signaling pathway. Downregulation of B7-H3 expression in HUVECs promotes lymphocyte trans-endothelial migration. These findings suggest that B7-H3 represents a promising therapeutic target for TNBC, and the combination of anti-B7-H3 and anti-PD-1 therapies may have synergetic effects in treating TNBC.

Keywords: B7-H3; Lymphocytes infiltration; PD-L1; TNBC; Tumor vessel normalization.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no competing interests.

MeSH terms

Substances