Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 2;197(3):225.
doi: 10.1007/s10661-025-13623-4.

Heavy metals pollution in riverine sediments: Distribution, source, and environmental implications

Affiliations

Heavy metals pollution in riverine sediments: Distribution, source, and environmental implications

Kifayatullah Khan et al. Environ Monit Assess. .

Abstract

This research reports heavy metal pollution in riverine sediments from River Kabul, Pakistan, which could endanger human health and ecology via the food web. The results revealed a substantial special variation in the average contents (mg/kg) of chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), lead (Pb), iron (Fe), and aluminum (Al) in riverine sediments, in the order of Fe (20,234.51) > Al (17,550.86) > Mn (375.45) > Zn (149.08) > Ni (89.11) > Cr (83.36) > Pb (45.29) > Cu (19.86) > Cd (7.48) > Co (6.28) > Hg (0.81). Among the heavy metals, Cd exhibited the highest degree of pollution along the river, followed by Hg > Ni > Zn > Pb > Al > Cr > Mn > Fe > Cu > Co. The overall contamination factor (CF) values for the sum of heavy metals were highest at monitoring site S-9, followed by S-8 > S-10 > S-6 > S-5 > S-7 > S-1 > S-4 > S-12 > S-3 > S-2 > S-1 with pollution load index (PLI) > 1, whereas the geo-accumulation index (Igeo) values of Cd and Hg fluctuated between Levels 3, 4, and 6, suggesting moderate to extreme pollution in the river. The correlation statistics determined the fate and distribution of heavy metals by establishing significant positive correlations between the specific metals of bounded sediments. The cluster analysis separates the correlated metals into Groups A and B, and Groups 1 and 2. While the principal component analysis evaluates the qualitative behavior of clustering by discerning industrial, agrochemicals, mining, and domestic wastewater discharges, leakages of lubricants along with multiple geogenic inputs, erosion of mafic and ultramafic rocks, and minimal atmospheric deposition are all potential sources of Cr, Mn, Co, Ni, Cu, Zn, Cd, Hg, Pb, Fe, and Al contamination. In terms of risk, the contaminations of Mn, Co, Cu, Zn, and Pb in riverine sediments were 85, 100, 100, 17, and 11%, respectively, representing a rare biological influence because their value is less than their corresponding threshold effect concentrations (TECs), whereas the levels of Mn, Ni, Cd, and Hg were above their probable effect concentrations (PECs) of 100, 100, 81, and 52%, respectively, representing prominent adverse biological influence. Based on consensus-based TECs and PECs, the contamination levels of Cr, Mn, Zn, Cd, Hg, and Pb were 100, 85, 83, 19, 48, and 90%, respectively, indicating occasionally exhibited adverse biological effects on the riverine population. Besides, the overall potential ecological risk index (PERI) of Cd and Hg, in particular, exhibited the maximum pollution level ( E r i ≥ 320), suggesting a very high potential ecological risk in the drainage that requires special attention from pollution control authorities.

Keywords: Ecological risks; Heavy metals; Multivariate analysis; River Kabul; Riverine sediments.

PubMed Disclaimer

Conflict of interest statement

Declarations. Ethical approval: All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the “Instructions for Authors.” Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.

Similar articles

Cited by

References

    1. Ahdy, H. H., & Youssef, D. H. (2011). Fractionation analysis of some heavy metals in sediments of the north-western part of the Red Sea. Egypt. Chemistry and Ecology, 27, 427–443.
    1. Ali, B. N. M., Lin, C. Y., Cleophas, F., Abdullah, M. H., & Musta, B. (2015). Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environmental Monitoring and Assessment, 187, 4190.
    1. Ali, H., & Khan, E. (2018). Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Human and Ecological Risk Assessment: An International Journal, 24, 2101–2118.
    1. Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019, 14.
    1. Ali, M. M., Ali, M. L., Islam, M. S., & Rahman, M. Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management, 5, 27–35.

LinkOut - more resources