This is a preprint.
Diverse microtubule-destabilizing drugs induce equivalent molecular pathway responses in endothelial cells
- PMID: 39896568
- PMCID: PMC11785092
- DOI: 10.1101/2025.01.22.632572
Diverse microtubule-destabilizing drugs induce equivalent molecular pathway responses in endothelial cells
Abstract
Drugs that modulate microtubule (MT) dynamics are well-characterized at the molecular level, yet the mechanisms linking these molecular effects to their distinct clinical outcomes remain unclear. Several MT-destabilizing drugs, including vinblastine, combretastatin A4, and plinabulin, are widely used, or are under evaluation for cancer treatment. Although all three depolymerize MTs, they do so through distinct biochemical mechanisms. Furthermore, their clinical profiles and therapeutic uses differ considerably. To investigate whether differential modulation of molecular pathways might account for clinical differences, we compared gene expression and signaling pathway responses in human pulmonary microvascular endothelial cells (HPMECs), alongside the MT-stabilizing drug docetaxel and the pro-inflammatory cytokine TNF-α. RNA-sequencing and phosphoproteomics revealed that all three MT destabilizers triggered equivalent molecular responses. The substantial changes in gene expression caused by MT destabilization were completely dependent on Rho family GTPase activation. These findings suggest that the distinct clinical profiles of the destabilizing drugs depend on differences in pharmacokinetics (PK) and tissue distribution rather than molecular actions. The washout rate of the three drugs differed, which likely translates to PK differences. Our data provide insights into how MT destabilization triggers signaling changes, potentially explaining how these drugs induce cell cycle re-entry in quiescent cells and how plinabulin ameliorates chemotherapy-induced neutropenia.
Figures




Similar articles
-
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.Health Technol Assess. 2001;5(32):1-195. doi: 10.3310/hta5320. Health Technol Assess. 2001. PMID: 12065068
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun. Autism Adulthood. 2025. PMID: 40539213
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
References
-
- Schattner A., Colchicine – new horizons for an ancient drug. Review based on the highest hierarchy of evidence. Eur. J. Intern. Med. 96, 34–41 (2022). - PubMed
-
- Jordan M. A., Wilson L., Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004). - PubMed
-
- Florian S., Mitchison T. J., Anti-Microtubule Drugs. Methods Mol. Biol. (Clifton, NJ) 1413, 403–21 (2016). - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources