Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Mar 15:672:125297.
doi: 10.1016/j.ijpharm.2025.125297. Epub 2025 Feb 1.

Overview on LNP-mRNA encapsulation unit operation: Mixing technologies, scalability, and influence of formulation & process parameters on physico-chemical characteristics

Affiliations
Review

Overview on LNP-mRNA encapsulation unit operation: Mixing technologies, scalability, and influence of formulation & process parameters on physico-chemical characteristics

Laurine Hourdel et al. Int J Pharm. .

Abstract

Nanoparticles carrying active drug substances have been used since the 70's and have undergone numerous improvements since then. Nowadays, the latest generation of nanoparticles, called lipid nanoparticles (LNPs), is used for different applications such as vaccines and cancer treatments and offer a versatile approach to delivering genetic materials like RNA. LNPs are non-viral delivery vehicles obtained by the self-assembly of lipids during the rapid mixing of an aqueous phase containing mRNA with an organic phase containing lipids. During this process, mRNA is encapsulated within the LNP due to electrostatic interaction with an ionizable lipid. Different methods to produce LNPs are described in the literature and, as of now, continuous methods are mostly used to produce LNP-encapsulated mRNA (LNP-mRNA). T-shaped mixers are commonly used to produce mRNA-LNPs. This technology can operate at two different scales: microfluidic chips which can range from tens to hundreds of microns in size, and millimetric tubing for production scale up. This review intends to describe LNP-mRNA characteristics and their production modes with a special focus on the challenges related to the mixing quality, especially during scale-up.

Keywords: Fluid mixing modeling; Lipid Nanoparticles (LNPs); Nanoprecipitation; Process scale-up; T-mixers; mRNA.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources