Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 12;27(7):3950-3959.
doi: 10.1039/d4cp04563g.

Half-metallic and ferromagnetic phases in CrSH monolayers using DFT+ U and BO-MD calculations

Affiliations

Half-metallic and ferromagnetic phases in CrSH monolayers using DFT+ U and BO-MD calculations

Akkarach Sukserm et al. Phys Chem Chem Phys. .

Abstract

We present a comprehensive investigation of the structural, electronic, magnetic, and vibrational properties of CrSH monolayers in the 1T and 1H phases using density functional theory (DFT)+U calculations with a converged Hubbard U value of 5.52 eV and Born-Oppenheimer molecular dynamics (BO-MD) simulations. The ferromagnetic (FM) 1T-CrSH phase is found to be dynamically and thermodynamically stable, exhibiting semiconducting behavior with a band gap of 1.1 eV and a magnetic moment of 3.0 μB per Cr atom. On the other hand, the 1H-CrSH phase is a half-metallic (HM) phase. We found that it is a metastable phase and undergoes a rapid phase transition to the 1T phase at a finite temperature at 300 K. Phonon calculations, performed using the finite displacement method and corrected for rotational invariance corrections with Huang and Born-Huang sum rules, resolve spurious imaginary frequencies in the flexural ZA phonon mode near the Γ-point, ensuring physical accuracy. These findings establish CrSH monolayers as promising candidates for spintronic and valleytronic applications, with tunable electronic properties enabled by phase engineering.

PubMed Disclaimer

LinkOut - more resources