Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May:185:107198.
doi: 10.1016/j.neunet.2025.107198. Epub 2025 Jan 27.

CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks

Affiliations
Free article

CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks

Kaizheng Wang et al. Neural Netw. 2025 May.
Free article

Abstract

Effective uncertainty estimation is becoming increasingly attractive for enhancing the reliability of neural networks. This work presents a novel approach, termed Credal-Set Interval Neural Networks (CreINNs), for classification. CreINNs retain the fundamental structure of traditional Interval Neural Networks, capturing weight uncertainty through deterministic intervals. CreINNs are designed to predict an upper and a lower probability bound for each class, rather than a single probability value. The probability intervals can define a credal set, facilitating estimating different types of uncertainties associated with predictions. Experiments on standard multiclass and binary classification tasks demonstrate that the proposed CreINNs can achieve superior or comparable quality of uncertainty estimation compared to variational Bayesian Neural Networks (BNNs) and Deep Ensembles. Furthermore, CreINNs significantly reduce the computational complexity of variational BNNs during inference. Moreover, the effective uncertainty quantification of CreINNs is also verified when the input data are intervals.

Keywords: Classification; Credal sets; Interval neural networks; Probability intervals; Uncertainty estimation.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources