Dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDSCs), and periodontal ligament stem cells (PDLSCs) isolation, characterization and the effectiveness of allantoin as bioactive molecule for dental regeneration
- PMID: 39904472
- DOI: 10.1016/j.jdent.2025.105604
Dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDSCs), and periodontal ligament stem cells (PDLSCs) isolation, characterization and the effectiveness of allantoin as bioactive molecule for dental regeneration
Abstract
Introduction: Dental stem cells are valuable tools in regenerative medicine due to their pluripotency and self-renewal properties. This study aimed to investigate the effects of allantoin (Al) on Dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDSCs), and periodontal ligament stem cells (PDLSCs) regarding cytotoxicity, proliferation, wound healing, and osteogenic differentiation.
Methods: Human dental stem cells were isolated from three dental tissues using the explant culture method and cultured in DMEM-F12 medium supplemented with 15 % fetal bovine serum (FBS) and antibiotics. The cytotoxicity and proliferation of allantoin were assessed using the XTT cell viability assay at concentrations ranging from 0.25 to 5 mg/mL. Wound healing was evaluated through a scratch assay at 1 mg/mL, and osteogenic differentiation was assessed using Alizarin Red S staining at 0.5 mg/mL and 1 mg/mL.
Results: Al exhibited no cytotoxic effects across the tested concentrations. It enhanced cell proliferation, particularly in SHEDSCs at 5 mg/mL. DPSCs also showed significant improvement in wound healing in the scratch assay. At 1 mg/mL, Al inhibited osteogenic differentiation in DPSCs and PDLSCs, as indicated by reduced mineralization.
Conclusion: Al shows potential as a non-cytotoxic agent for enhancing the proliferation of dental stem cells, especially SHEDSCs. However, its limited effect on wound healing of SHEDSCs and PDLSCs and inhibition of osteogenic differentiation at higher concentrations suggest that further optimization is required for its application in bone regeneration.
Statement of clinical relevance: Evaluation of the effects of plant-based therapeutic compounds on various types of dental stem cells may have the potential to increase the success of stem cell-based therapies in clinical applications in regenerative dentistry.
Keywords: Allantoin; Cytotoxicity; Dental pulp stem cells; Osteogenesis; Periodontal ligament stem cells; Stem cells from human exfoliated deciduous teeth.
Copyright © 2025. Published by Elsevier Ltd.
Conflict of interest statement
Declaration of competing interest The authors have declared no conflict of interest
Similar articles
-
A Comparative Analysis of the Osteogenic Potential of Dental Mesenchymal Stem Cells.Stem Cells Dev. 2019 Aug 1;28(15):1050-1058. doi: 10.1089/scd.2019.0023. Epub 2019 Jul 15. Stem Cells Dev. 2019. PMID: 31169063
-
Comparative Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs): Difference in effect of aspirin on osteoblast potential of PDLSCs and DPSCs.Tissue Cell. 2025 Jun;94:102776. doi: 10.1016/j.tice.2025.102776. Epub 2025 Feb 21. Tissue Cell. 2025. PMID: 40022908 Review.
-
Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth.Cell Tissue Res. 2010 May;340(2):323-33. doi: 10.1007/s00441-010-0953-0. Epub 2010 Mar 23. Cell Tissue Res. 2010. PMID: 20309582
-
Effect of platelet-rich plasma on dental stem cells derived from human impacted third molars.Regen Med. 2011 Jan;6(1):67-79. doi: 10.2217/rme.10.96. Regen Med. 2011. PMID: 21175288
-
Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine.J Dent Res. 2009 Sep;88(9):792-806. doi: 10.1177/0022034509340867. J Dent Res. 2009. PMID: 19767575 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous