Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 1;31(19):e202404446.
doi: 10.1002/chem.202404446. Epub 2025 Feb 14.

Chiral N-Alkylfluorenyl-Substituted N-Heterocyclic Carbenes in the Gold(I)-Catalyzed Enantioselective Cycloisomerization of 1,6-Enynes

Affiliations

Chiral N-Alkylfluorenyl-Substituted N-Heterocyclic Carbenes in the Gold(I)-Catalyzed Enantioselective Cycloisomerization of 1,6-Enynes

Robin Heinrich et al. Chemistry. .

Abstract

A series of chiral A*Flu-NHC-gold(I) complexes, where A*Flu-NHC is an N-heterocyclic carbene (imidazolin-2-ylidene or benzimidazolin-2-ylidene) bearing a chiral 9-alkyl-9-fluorenyl N-substituent and a 2,6-diisopropylphenyl or benzyl N'-substituent, were straightforwardly prepared in few steps from readily available 2,6-diisopropylamine, imidazole or benzimidazole. The chirality of the N-substituent lies in the presence of a chiral alcoholic alkyl chain on the fluorenyl, which results from the opening of commercially available chiral styrene oxide, yielding to a 2-hydroxy-2-phenylethyl or a 2-hydroxy-1-phenylethyl group. Four [AuCl(A*Flu-NHC)] complexes were tested as precatalysts in an enantioselective cycloisomerization of a 1,6-enyne. Notably, the best inductions were observed with the benzimidazolin-2-ylidene derivative bearing a 2-hydroxy-1-phenylethyl group on the fluorenyl ring, showing that a constrained rotation around the N-Cfluorenyl bond and a chiral center in α position of the fluorenyl ring are determining factors. Interestingly, a strong improvement of the induction with up to 72 % ee was observed using AgOTf as activator. The presence of a hydrogen bond between the hydroxyl group and OTf- in the in situ generated active cationic gold(I) species probably stiffens its structure. This type of ligand-counteranion interaction represents a novel strategy for optimizing chirality transfer in asymmetric gold(I) catalysis.

Keywords: Asymmetric catalysis; Cycloisomerization; Gold; N-heterocyclic carbenes; Steric hindrance.

PubMed Disclaimer

References

    1. None
    1. E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326–3350;
    1. N. Marion, S. P. Nolan, Chem. Soc. Rev. 2008, 37, 1776–1782;
    1. A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232–5241;
    1. A. Corma, A. Leyva-Pérez, M. J. Sabater, Chem. Rev. 2011, 111, 1657–1712;

LinkOut - more resources