Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun;46(16):3226-3241.
doi: 10.1080/09593330.2025.2460241. Epub 2025 Feb 6.

Numerical simulation of flow field structure and sand accumulation around railway subgrade

Affiliations

Numerical simulation of flow field structure and sand accumulation around railway subgrade

Xue Chengjie et al. Environ Technol. 2025 Jun.

Abstract

Based on the current situation of railway sand damage in Tuotuohe region, the structure of wind-sand flow and the spatial distribution characteristics of sand particles on both sides of railway embankment are simulated by CFD Fluent software according to flow field measurement and wind tunnel test.The results demonstrate that the subgrade's shoulders are vulnerable to suffering from wind erosion; The sand particles' spatial deposition location and thickness are significantly affected by the incoming wind velocity and the railway subgrade. When the low incoming sand-carrying wind velocity, a lot of sand grains fall and are deposited at the railway embankment slope foot due to the sand-carrying wind velocity reduced. Meanwhile, the amount of leeward side deposited sand particles exceeds the windward side due to the vortex action to the subgrade leeward side region. As incoming sand-carrying wind velocity increases, eddy current development intensity at the leeward foot of the subgrade increases, which further results in a large number of sand particles accumulated and deposited at a certain distance away from the railway embankment slope foot; Sand particle deposition location on the railway embankment top surface mainly occurred closing to the leeward side's subgrade shoulder. The phenomenon of sand deposition is more serious in the condition of weak wind and multiple wind directions; Different ground surfaces affect the density of windy sand flow structure, indirectly affecting sand particle deposition thickness on both sides of the railway embankment.

Keywords: Tuotuohe region; flow field; numerical simulation; railway subgrade; sand particle accumulation.

PubMed Disclaimer

LinkOut - more resources