Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 6;23(1):35.
doi: 10.1186/s12915-024-02101-x.

Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology

Elliot Gould  1 Hannah S Fraser  2 Timothy H Parker  3 Shinichi Nakagawa  4 Simon C Griffith  5 Peter A Vesk  1 Fiona Fidler  2 Daniel G Hamilton  6 Robin N Abbey-Lee  7 Jessica K Abbott  8 Luis A Aguirre  9 Carles Alcaraz  10 Irith Aloni  11 Drew Altschul  12 Kunal Arekar  13 Jeff W Atkins  14 Joe Atkinson  15 Christopher M Baker  16 Meghan Barrett  17 Kristian Bell  18 Suleiman Kehinde Bello  19 Iván Beltrán  20 Bernd J Berauer  21 Michael Grant Bertram  22 Peter D Billman  23 Charlie K Blake  24 Shannon Blake  25 Louis Bliard  26 Andrea Bonisoli-Alquati  27 Timothée Bonnet  28 Camille Nina Marion Bordes  29 Aneesh P H Bose  22 Thomas Botterill-James  30 Melissa Anna Boyd  31 Sarah A Boyle  32 Tom Bradfer-Lawrence  33 Jennifer Bradham  34 Jack A Brand  22 Martin I Brengdahl  35 Martin Bulla  36 Luc Bussière  37 Ettore Camerlenghi  38 Sara E Campbell  39 Leonardo L F Campos  40 Anthony Caravaggi  41 Pedro Cardoso  42 Charles J W Carroll  43 Therese A Catanach  44 Xuan Chen  45 Heung Ying Janet Chik  46 Emily Sarah Choy  47 Alec Philip Christie  48 Angela Chuang  49 Amanda J Chunco  50 Bethany L Clark  51 Andrea Contina  52 Garth A Covernton  53 Murray P Cox  54 Kimberly A Cressman  55 Marco Crotti  56 Connor Davidson Crouch  57 Pietro B D'Amelio  58 Alexandra Allison de Sousa  59 Timm Fabian Döbert  60 Ralph Dobler  61 Adam J Dobson  62 Tim S Doherty  63 Szymon Marian Drobniak  64 Alexandra Grace Duffy  65 Alison B Duncan  66 Robert P Dunn  67 Jamie Dunning  68 Trishna Dutta  69 Luke Eberhart-Hertel  70 Jared Alan Elmore  71 Mahmoud Medhat Elsherif  72 Holly M English  73 David C Ensminger  74 Ulrich Rainer Ernst  75 Stephen M Ferguson  76 Esteban Fernandez-Juricic  77 Thalita Ferreira-Arruda  78 John Fieberg  79 Elizabeth A Finch  80 Evan A Fiorenza  81 David N Fisher  82 Amélie Fontaine  83 Wolfgang Forstmeier  70 Yoan Fourcade  84 Graham S Frank  85 Cathryn A Freund  86 Eduardo Fuentes-Lillo  87 Sara L Gandy  88 Dustin G Gannon  89 Ana I García-Cervigón  90 Alexis C Garretson  91 Xuezhen Ge  92 William L Geary  93 Charly Géron  94 Marc Gilles  95 Antje Girndt  96 Daniel Gliksman  97 Harrison B Goldspiel  98 Dylan G E Gomes  99 Megan Kate Good  100 Sarah C Goslee  101 J Stephen Gosnell  102 Eliza M Grames  103 Paolo Gratton  104 Nicholas M Grebe  105 Skye M Greenler  106 Maaike Griffioen  107 Daniel M Griffith  108 Frances J Griffith  109 Jake J Grossman  110 Ali Güncan  111 Stef Haesen  112 James G Hagan  113 Heather A Hager  114 Jonathan Philo Harris  115 Natasha Dean Harrison  116 Sarah Syedia Hasnain  117 Justin Chase Havird  118 Andrew J Heaton  119 María Laura Herrera-Chaustre  120 Tanner J Howard  1 Bin-Yan Hsu  121 Fabiola Iannarilli  79 Esperanza C Iranzo  122 Erik N K Iverson  123 Saheed Olaide Jimoh  124 Douglas H Johnson  79 Martin Johnsson  125 Jesse Jorna  126 Tommaso Jucker  127 Martin Jung  128 Ineta Kačergytė  129 Oliver Kaltz  130 Alison Ke  131 Clint D Kelly  132 Katharine Keogan  133 Friedrich Wolfgang Keppeler  134 Alexander K Killion  135 Dongmin Kim  136 David P Kochan  137 Peter Korsten  138 Shan Kothari  139 Jonas Kuppler  140 Jillian M Kusch  141 Malgorzata Lagisz  142 Kristen Marianne Lalla  83 Daniel J Larkin  79 Courtney L Larson  143 Katherine S Lauck  131 M Elise Lauterbur  144 Alan Law  145 Don-Jean Léandri-Breton  83 Jonas J Lembrechts  146 Kiara L'Herpiniere  5 Eva J P Lievens  147 Daniela Oliveira de Lima  148 Shane Lindsay  149 Martin Luquet  150 Ross MacLeod  151 Kirsty H Macphie  152 Kit Magellan  153 Magdalena M Mair  154 Lisa E Malm  155 Stefano Mammola  156 Caitlin P Mandeville  157 Michael Manhart  158 Laura Milena Manrique-Garzon  159 Elina Mäntylä  121 Philippe Marchand  160 Benjamin Michael Marshall  145 Charles A Martin  161 Dominic Andreas Martin  162 Jake Mitchell Martin  22 April Robin Martinig  163 Erin S McCallum  22 Mark McCauley  164 Sabrina M McNew  144 Scott J Meiners  165 Thomas Merkling  166 Marcus Michelangeli  22 Maria Moiron  167 Bruno Moreira  168 Jennifer Mortensen  169 Benjamin Mos  170 Taofeek Olatunbosun Muraina  171 Penelope Wrenn Murphy  172 Luca Nelli  56 Petri Niemelä  173 Josh Nightingale  174 Gustav Nilsonne  175 Sergio Nolazco  38 Sabine S Nooten  176 Jessie Lanterman Novotny  177 Agnes Birgitta Olin  178 Chris L Organ  179 Kate L Ostevik  180 Facundo Xavier Palacio  181 Matthieu Paquet  129 Darren James Parker  182 David J Pascall  183 Valerie J Pasquarella  184 John Harold Paterson  113 Ana Payo-Payo  185 Karen Marie Pedersen  186 Grégoire Perez  187 Kayla I Perry  188 Patrice Pottier  142 Michael J Proulx  189 Raphaël Proulx  190 Jessica L Pruett  191 Veronarindra Ramananjato  192 Finaritra Tolotra Randimbiarison  193 Onja H Razafindratsima  194 Diana J Rennison  195 Federico Riva  196 Sepand Riyahi  197 Michael James Roast  198 Felipe Pereira Rocha  199 Dominique G Roche  200 Cristian Román-Palacios  201 Michael S Rosenberg  202 Jessica Ross  203 Freya E Rowland  204 Deusdedith Rugemalila  205 Avery L Russell  206 Suvi Ruuskanen  207 Patrick Saccone  208 Asaf Sadeh  209 Stephen M Salazar  210 Kris Sales  211 Pablo Salmón  212 Alfredo Sánchez-Tójar  213 Leticia Pereira Santos  214 Francesca Santostefano  215 Hayden T Schilling  216 Marcus Schmidt  217 Tim Schmoll  213 Adam C Schneider  218 Allie E Schrock  219 Julia Schroeder  68 Nicolas Schtickzelle  220 Nick L Schultz  221 Drew A Scott  222 Michael Peter Scroggie  223 Julie Teresa Shapiro  224 Nitika Sharma  225 Caroline L Shearer  219 Diego Simón  226 Michael I Sitvarin  227 Fabrício Luiz Skupien  228 Heather Lea Slinn  229 Grania Polly Smith  230 Jeremy A Smith  231 Rahel Sollmann  89 Kaitlin Stack Whitney  232 Shannon Michael Still  233 Erica F Stuber  234 Guy F Sutton  235 Ben Swallow  236 Conor Claverie Taff  237 Elina Takola  238 Andrew J Tanentzap  239 Rocío Tarjuelo  240 Richard J Telford  241 Christopher J Thawley  242 Hugo Thierry  243 Jacqueline Thomson  92 Svenja Tidau  244 Emily M Tompkins  245 Claire Marie Tortorelli  246 Andrew Trlica  247 Biz R Turnell  248 Lara Urban  249 Stijn Van de Vondel  146 Jessica Eva Megan van der Wal  250 Jens Van Eeckhoven  251 Francis van Oordt  83 K Michelle Vanderwel  252 Mark C Vanderwel  253 Karen J Vanderwolf  254 Juliana Vélez  79 Diana Carolina Vergara-Florez  255 Brian C Verrelli  146 Marcus Vinícius Vieira  256 Nora Villamil  257 Valerio Vitali  258 Julien Vollering  259 Jeffrey Walker  260 Xanthe J Walker  261 Jonathan A Walter  262 Pawel Waryszak  263 Ryan J Weaver  264 Ronja E M Wedegärtner  265 Daniel L Weller  266 Shannon Whelan  83 Rachel Louise White  267 David William Wolfson  79 Andrew Wood  268 Scott W Yanco  269 Jian D L Yen  223 Casey Youngflesh  270 Giacomo Zilio  271 Cédric Zimmer  272 Gregory Mark Zimmerman  273 Rachel A Zitomer  85
Affiliations

Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology

Elliot Gould et al. BMC Biol. .

Abstract

Although variation in effect sizes and predicted values among studies of similar phenomena is inevitable, such variation far exceeds what might be produced by sampling error alone. One possible explanation for variation among results is differences among researchers in the decisions they make regarding statistical analyses. A growing array of studies has explored this analytical variability in different fields and has found substantial variability among results despite analysts having the same data and research question. Many of these studies have been in the social sciences, but one small "many analyst" study found similar variability in ecology. We expanded the scope of this prior work by implementing a large-scale empirical exploration of the variation in effect sizes and model predictions generated by the analytical decisions of different researchers in ecology and evolutionary biology. We used two unpublished datasets, one from evolutionary ecology (blue tit, Cyanistes caeruleus, to compare sibling number and nestling growth) and one from conservation ecology (Eucalyptus, to compare grass cover and tree seedling recruitment). The project leaders recruited 174 analyst teams, comprising 246 analysts, to investigate the answers to prespecified research questions. Analyses conducted by these teams yielded 141 usable effects (compatible with our meta-analyses and with all necessary information provided) for the blue tit dataset, and 85 usable effects for the Eucalyptus dataset. We found substantial heterogeneity among results for both datasets, although the patterns of variation differed between them. For the blue tit analyses, the average effect was convincingly negative, with less growth for nestlings living with more siblings, but there was near continuous variation in effect size from large negative effects to effects near zero, and even effects crossing the traditional threshold of statistical significance in the opposite direction. In contrast, the average relationship between grass cover and Eucalyptus seedling number was only slightly negative and not convincingly different from zero, and most effects ranged from weakly negative to weakly positive, with about a third of effects crossing the traditional threshold of significance in one direction or the other. However, there were also several striking outliers in the Eucalyptus dataset, with effects far from zero. For both datasets, we found substantial variation in the variable selection and random effects structures among analyses, as well as in the ratings of the analytical methods by peer reviewers, but we found no strong relationship between any of these and deviation from the meta-analytic mean. In other words, analyses with results that were far from the mean were no more or less likely to have dissimilar variable sets, use random effects in their models, or receive poor peer reviews than those analyses that found results that were close to the mean. The existence of substantial variability among analysis outcomes raises important questions about how ecologists and evolutionary biologists should interpret published results, and how they should conduct analyses in the future.

Keywords: Analytical heterogeneity; Many-analyst; Metascience; Replication crisis; Reproducibility.

PubMed Disclaimer

Conflict of interest statement

Declarations. Ethics approval and consent to particpate: We obtained permission to conduct this research from the Whitman College Institutional Review Board (IRB). As part of this permission, the IRB approved the consent form ( https://osf.io/xyp68/ ) that all participants completed prior to joining the study. The authors declare that they have no competing interests. Competing interests: The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Schematic of research process showing recruited analyst and reviewer contributions in orange and core team contributions in blue. Items that are crossed out were preregistered but could not be conducted. Items with a greyed background were added as exploratory analyses after preregistration
Fig. 2
Fig. 2
Forest plots of meta-analytic estimated standardized effect sizes (Z r, blue triangles) and their 95% confidence intervals for each effect size included in the meta-analysis model. A Blue tit analyses: Points where Z r are less than 0 indicate analyses that found a negative relationship between sibling number and nestling growth. B Eucalyptus analyses: Points where Z r are less than 0 indicate a negative relationship between grass cover and Eucalyptus seedling success. The meta-analytic mean effect size is denoted by a black circle and a dashed vertical line, with error bars also representing the 95% confidence interval. The solid black vertical line demarcates effect size of 0, indicating no relationship between the test variable and the response variable. Note that the Eucalyptus plot omits one extreme outlier with the value of −4.47 (Supplementary Material A, Figure A.2) in order to standardize the x-axes on these two panels
Fig. 3
Fig. 3
Forest plot of meta-analytic estimated out-of-sample predictions. A Standardized (z-score) blue tit out-of-sample predictions, y i. B Response-scale (stem counts) Eucalyptus out-of-sample predictions. Triangles represent individual estimates. Circles represent the meta-analytic mean for each prediction scenario. Dark-blue points correspond to y25 scenario, medium-blue points correspond to the y50 scenario, while light blue points correspond to the y75 scenario. Error bars are 95% confidence intervals. Note that, for the Eucalyptus analysis, outliers (observations more than 3 SD above the mean) have been removed prior to model fitting and do not appear on this figure. The x-axis is truncated to approximately 140, and thus some error bars are incomplete. See Supplementary Material B, Figure B.6 for full figure
Fig. 4
Fig. 4
Violin plot of Box-Cox transformed deviation from meta-analytic mean Z¯r as a function of categorical peer rating. Grey points for each rating group denote model-estimated marginal mean deviation, and error bars denote 95%CI of the estimate. A Blue tit dataset. B Eucalyptus dataset
Fig. 5
Fig. 5
Fitted model of the Box-Cox-transformed deviation score (deviation in effect size from meta-analytic mean) as a function of the mean Sorensen’s index showing distinctiveness of the set of predictor variables. Grey ribbons on predicted values are 95% CI’s. A blue tit dataset. B Eucalyptus dataset
Fig. 6
Fig. 6
Violin plot of mean Box-Cox transformed deviation from meta-analytic mean as a function of random-effects inclusion in Eucalyptus analyses. White point for each group of analyses denotes model-estimated marginal mean deviation, and error bars denote 95% CI of the estimate

References

    1. Aczel, Balazs, Barnabas Szaszi, Gustav Nilsonne, Olmo R van den Akker, Casper J Albers, Marcel ALM van Assen, Jojanneke A Bastiaansen, et al. 2021. “Consensus-Based Guidance for Conducting and Reporting Multi-Analyst Studies. eLife. 10 (November). 10.7554/elife.72185. - PMC - PubMed
    1. Allaire, J. J., Charles Teague, Carlos Scheidegger, Yihui Xie, and Christophe Dervieux. 2024. Quarto. 10.5281/zenodo.5960048.
    1. Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, et al. 2024. rmarkdown: Dynamic Documents for r. https://github.com/rstudio/rmarkdown.
    1. Arif S, Aaron MacNeil M. Predictive models aren’t for causal inference. Ecology Letters. 2022;25(8):1741–5. 10.1111/ele.14033. - PubMed
    1. Arif, Suchinta, and M. Aaron MacNeil. 2023. “Applying the Structural Causal Model Framework for Observational Causal Inference in Ecology.” Ecological Monographs. 93(1):e1554. 10.1002/ecm.1554.