Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;110(6-1):064151.
doi: 10.1103/PhysRevE.110.064151.

Learning entropy production from underdamped Langevin trajectories

Affiliations

Learning entropy production from underdamped Langevin trajectories

Jinghao Lyu et al. Phys Rev E. 2024 Dec.

Abstract

Entropy production (EP) is a central quantity in nonequilibrium physics as it monitors energy dissipation, irreversibility, and free energy differences during thermodynamic transformations. Estimating EP, however, is challenging both theoretically and experimentally due to limited access to the system dynamics. For overdamped Langevin dynamics and Markov jump processes it was recently proposed that, from thermodynamic uncertainty relations (TURs), short-time cumulant currents can be used to estimate EP without knowledge of the dynamics. Yet, estimation of EP in underdamped Langevin systems remains an active challenge. To address this, we derive a modified TUR that relates the statistics of two specific currents-one cumulant current and one stochastic current-to a system's EP. These two distinct but related currents are used to constrain EP in the modified TUR. One highlight is that there always exists a family of currents such that the uncertainty relations saturate, even for long-time averages and in nonsteady-state scenarios. Another is that our method only requires limited knowledge of the dynamics-specifically, the damping coefficient to mass ratio and the diffusion constant. This uncertainty relation allows estimating EP for both overdamped and underdamped Langevin dynamics. We validate the method numerically, through applications to several underdamped systems, to underscore the flexibility in obtaining EP in nonequilibrium Langevin systems.

PubMed Disclaimer