Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 1;138(5):JCS263433.
doi: 10.1242/jcs.263433. Epub 2025 Mar 14.

The non-canonical Smoothened-AMPK axis regulates Smaug1 biomolecular condensates

Affiliations

The non-canonical Smoothened-AMPK axis regulates Smaug1 biomolecular condensates

María Gabriela Thomas et al. J Cell Sci. .

Abstract

Biomolecular condensates (BMCs) emerge as important players in RNA regulation. The RNA-binding protein Smaug forms cytosolic BMCs in mammals, insects and yeasts and affects mitochondrial function and/or responses to nutrient deprivation. Here, we found that the non-canonical activation of the Smoothened (SMO)-AMPK pathway, which is known to affect energy metabolism, triggers the immediate disassembly of BMCs formed by a number of human and rodent Smaug orthologs, whereas processing bodies remain rather unaltered. A non-phosphorylatable SMO mutant abrogated the effect, involving SMO phosphorylation in human (h)Smaug1 (also known as SAMD4A) BMCs regulation. Three mechanistically different SMO ligands, namely SAG, GSA-10 and cyclopamine, elicited a similar response, which was blocked upon AMPK pharmacological inhibition. Polysome disassembly by puromycin halted Smaug1 BMC dissolution, thus suggesting that unbound transcripts became translationally active. Single-molecule fluorescent in situ hybridization illustrated the release of UQCRC1 mRNA. Finally, Smaug1 is a phosphoprotein bound by 14-3-3 proteins, and the competitive inhibitor difopein blocked the response to non-canonical SMO stimulation. We propose that the regulated condensation and dispersion of Smaug1 BMCs generate translational changes that contribute to metabolic regulation downstream of the non-canonical SMO-AMPK axis.

Keywords: Energy metabolism; Liquid–liquid phase separation; Membraneless organelle; Samd4a; Samd4b.

PubMed Disclaimer

Conflict of interest statement

Competing interests The authors declare no competing or financial interests.

Substances

LinkOut - more resources