Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 29;151(17):1248-1267.
doi: 10.1161/CIRCULATIONAHA.124.070782. Epub 2025 Feb 10.

Exploring Origin-Dependent Susceptibility of Smooth Muscle Cells to Aortic Diseases Through Intersectional Genetics

Affiliations

Exploring Origin-Dependent Susceptibility of Smooth Muscle Cells to Aortic Diseases Through Intersectional Genetics

Ximeng Han et al. Circulation. .

Abstract

Background: The developmental diversity among smooth muscle cells (SMCs) plays a crucial role in segment-specific aortic diseases. However, traditional genetic approaches are inadequate for enabling in vivo analysis of disease susceptibility associated with cellular origin. There is an urgent need to build genetic technologies that target different developmental origins to investigate the mechanisms of aortopathies, thereby facilitating the development of effective therapeutics.

Methods: To address this challenge, we developed an advanced dual recombinase-mediated intersectional genetic system, specifically designed to precisely target SMCs from various developmental origins in mice. Specifically, we used Isl1-Dre, Wnt1-Dre, Meox1-DreER, and Upk3b-Dre to target SMC progenitors from the second heart field, cardiac neural crest, somites, and mesothelium, respectively. This system was combined with single-cell RNA sequencing to investigate the impact of TGF-β (transforming growth factor-β) signaling in different segments of the aorta by selectively knocking out Tgfbr2 in the ascending aorta and Smad4 in the aortic arch, respectively.

Results: Through intersectional genetic approaches, we use the Myh11-Cre(ER) driver along with origin-specific Dre drivers to trace cells of diverse developmental origins within the SMC population. We found that a deficiency of Tgfbr2 in SMCs of the ascending aorta leads to aneurysm formation in this specific region. We also demonstrate the critical role of Smad4 in preserving aortic wall integrity and homeostasis in SMCs of the aortic arch.

Conclusions: Our approach to genetically targeting SMC subtypes provides a novel platform for exploring origin-dependent or location-specific aortic vascular diseases. This genetic system enables comprehensive analysis of contributions from different cell lineages to SMC behavior and pathology, thereby paving the way for targeted research and therapeutic interventions in the future.

Keywords: TGF-β; aortic diseases; developmental origin; lineage tracing; smooth muscle cell.

PubMed Disclaimer

Conflict of interest statement

None.

Comment in

MeSH terms

Substances

LinkOut - more resources