Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun;21(6):1298-1315.
doi: 10.1080/15548627.2025.2466144. Epub 2025 Feb 25.

Heat-shock chaperone HSPB1 mitigates poly-glycine-induced neurodegeneration via restoration of autophagic flux

Affiliations

Heat-shock chaperone HSPB1 mitigates poly-glycine-induced neurodegeneration via restoration of autophagic flux

Ning Ding et al. Autophagy. 2025 Jun.

Abstract

The CGG repeat expansions in the 5'-UTR regions of certain genes have been implicated in various neurodegenerative and muscular disorders. However, the underlying pathogenic mechanisms are not well understood. In this study, we explore the role of the small molecular chaperone HSPB1 in counteracting neurodegeneration induced by poly-glycine (poly-G) aggregates. Employing a reporter system, we demonstrate that CGG repeat expansions within the 5'-UTR of the GIPC1 gene produce poly-G proteins, by repeat-associated non-AUG (RAN) translation. Through proximity labeling and subsequent mass spectrometry analysis, we characterize the composition of poly-G insoluble aggregates and reveal that these aggregates sequester key macroautophagy/autophagy receptors, SQSTM1/p62 and TOLLIP. This sequestration disrupts MAP1LC3/LC3 recruitment and impairs autophagosome formation, thereby compromising the autophagic pathway. Importantly, we show that HSPB1 facilitates the dissociation of these receptors from poly-G aggregates and consequently restores autophagic function. Overexpressing HSPB1 alleviates poly-G-induced neurodegeneration in mouse models. Taken together, these findings highlight a mechanistic basis for the neuroprotective effects of HSPB1 and suggest its potential as a therapeutic target in treating poly-G-associated neurodegenerative diseases.Abbreviations: AD: Alzheimer disease; AIF1/Iba1: allograft inflammatory factor 1; Baf A1: bafilomycin A1; BFP: blue fluorescent protein; CQ: chloroquine; EIF2A/eIF-2α: eukaryotic translation initiation factor 2A; FRAP: fluorescence recovery after photobleaching; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary acidic protein; GFP: green fluorescent protein; HSPB1: heat shock protein family B (small) member 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NOTCH2NLC: notch 2 N-terminal like C; PD: Parkinson disease; PFA: paraformaldehyde; poly-A: poly-alanine; poly-G: poly-glycine; poly-R: poly-arginine; RAN translation: repeat-associated non-AUG translation; RBFOX3/NeuN: RNA binding fox-1 homolog 3; STED: stimulated emission depletion; TARDBP/TDP-43: TAR DNA binding protein; TG: thapsigargin; TOLLIP: toll interacting protein.

Keywords: Autophagy receptors; CGG repeat expansions; HSPB1; RAN translation; p62; poly-glycine.

PubMed Disclaimer

Conflict of interest statement

No potential conflict of interest was reported by the author(s).

References

    1. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062 - DOI - PubMed
    1. Kruglyak S, Durrett RT, Schug MD, et al. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci U S A. 1998;95(18):10774–10778. doi: 10.1073/pnas.95.18.10774 - DOI - PMC - PubMed
    1. Malik I, Kelley CP, Wang ET, et al. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol. 2021;22(9):589–607. doi: 10.1038/s41580-021-00382-6 - DOI - PMC - PubMed
    1. DeJesus-Hernandez M, Mackenzie I, Boeve B, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–256. - PMC - PubMed
    1. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–268. doi: 10.1016/j.neuron.2011.09.010 - DOI - PMC - PubMed

Publication types