Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 May;248(5 Pt 2):F705-10.
doi: 10.1152/ajprenal.1985.248.5.F705.

Effect of pH on phosphate transport in rat renal brush border membrane vesicles

Effect of pH on phosphate transport in rat renal brush border membrane vesicles

M Amstutz et al. Am J Physiol. 1985 May.

Abstract

The initial linear rate of phosphate uptake was analyzed in rat renal brush border membrane vesicles. An increase in medium pH from 6.0 to 8.0 increased the sodium gradient-dependent phosphate uptake about 20-fold. Sodium-independent phosphate uptake was not altered in this pH range. At pH 7.4 an intravesicular acid pH stimulated the initial linear uptake rate (20-25%). The apparent Km for sodium increased from about 100 to 200 mM when pH was decreased from 7.4 to 6.4. The Hill coefficient for sodium interaction was close to 2 and was unaffected by pH. Increasing external sodium reduced the apparent Km of the transport system for phosphate independent of pH. Variations of phosphate concentration had no influence on the apparent Km for sodium. At high sodium concentrations, small effects (20-30%) of pH on the apparent Vmax of the transport system were found; measured at saturating sodium concentrations, the apparent Km values calculated on the basis of total phosphate were increased (50-60%) when pH was decreased from 7.4 to 6.4. The data indicate that the major effect of pH is to modify the interaction of the transport system with sodium. At nonsaturating sodium concentrations, this resulted indirectly in a reduction in the affinity for phosphate related to a different occupancy of the sodium binding site. The differences of transport rate at low phosphate and high sodium concentrations could be explained by preferential transport of divalent phosphate as well as by pH effects on other carrier properties.

PubMed Disclaimer

Publication types

LinkOut - more resources