Individualized patient tumor organoids faithfully preserve human brain tumor ecosystems and predict patient response to therapy
- PMID: 39938519
- DOI: 10.1016/j.stem.2025.01.002
Individualized patient tumor organoids faithfully preserve human brain tumor ecosystems and predict patient response to therapy
Abstract
Tumor organoids are important tools for cancer research, but current models have drawbacks that limit their applications for predicting response to therapy. Here, we developed a fast, efficient, and complex culture system (IPTO, individualized patient tumor organoid) that accurately recapitulates the cellular and molecular pathology of human brain tumors. Patient-derived tumor explants were cultured in induced pluripotent stem cell (iPSC)-derived cerebral organoids, thus enabling culture of a wide range of human tumors in the central nervous system (CNS), including adult, pediatric, and metastatic brain cancers. Histopathological, genomic, epigenomic, and single-cell RNA sequencing (scRNA-seq) analyses demonstrated that the IPTO model recapitulates cellular heterogeneity and molecular features of original tumors. Crucially, we showed that the IPTO model predicts patient-specific drug responses, including resistance mechanisms, in a prospective patient cohort. Collectively, the IPTO model represents a major breakthrough in preclinical modeling of human cancers, which provides a path toward personalized cancer therapy.
Keywords: brain metastasis; glioblastoma; patient tumor organoid; predictive patient model; temozolomide; tumor heterogeneity.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests H.-K.L., X.M., C.W., T.P., M. Sun, W.H., C.S., and Y.M. submitted patent application PCT/CN2023/075746 related to this manuscript. M.P. is the founder of Tcelltech. H.-K.L. is the founder of AIPTO.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical