Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb;638(8050):365-369.
doi: 10.1038/s41586-024-08561-z. Epub 2025 Feb 12.

The bulk motion of gas in the core of the Centaurus galaxy cluster

Collaborators

The bulk motion of gas in the core of the Centaurus galaxy cluster

XRISM collaboration. Nature. 2025 Feb.

Abstract

Galaxy clusters contain vast amounts of hot ionized gas known as the intracluster medium (ICM). In relaxed cluster cores, the radiative cooling time of the ICM is shorter than the age of the cluster. However, the absence of line emission associated with cooling suggests heating mechanisms that offset the cooling, with feedback from active galactic nuclei (AGNs) being the most likely source1,2. Turbulence and bulk motions, such as the oscillating ('sloshing') motion of the core gas in the cluster potential well, have also been proposed as mechanisms for heat distribution from the outside of the core3,4. Here we present X-ray spectroscopic observations of the Centaurus galaxy cluster with the X-Ray Imaging and Spectroscopy Mission satellite. We find that the hot gas flows along the line of sight relative to the central galaxy, with velocities from 130 km s-1 to 310 km s-1 within about 30 kpc of the centre. This indicates bulk flow consistent with core gas sloshing. Although the bulk flow may prevent excessive accumulation of cooled gas at the centre, it could distribute the heat injected by the AGN and bring in thermal energy from the surrounding ICM. The velocity dispersion of the gas is found to be only ≲120 km s-1 in the core, even within about 10 kpc of the AGN. This suggests that the influence of the AGN on the surrounding ICM motion is limited in the cluster.

PubMed Disclaimer

References

    1. Churazov, E., Sunyaev, R., Forman, W. & Böhringer, H. Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002). - DOI
    1. McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007). - DOI
    1. Fujita, Y., Matsumoto, T. & Wada, K. Strong turbulence in the cool cores of galaxy clusters: can tsunamis solve the cooling flow problem? Astrophys. J. 612, 9–12 (2004). - DOI
    1. ZuHone, J. A., Markevitch, M. & Johnson, R. E. Stirring up the pot: can cooling flows in galaxy clusters be quenched by gas sloshing? Astrophys. J. 717, 908–928 (2010). - DOI
    1. Blakeslee, J. P., Lucey, J. R., Barris, B. J., Hudson, M. J. & Tonry, J. L. A synthesis of data from fundamental plane and surface brightness fluctuation surveys. Mon. Not. R. Astron. Soc. 327, 1004–1020 (2001). - DOI

LinkOut - more resources